Python nltk.classify.accuracy() Examples

The following are 2 code examples of nltk.classify.accuracy(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module nltk.classify , or try the search function .
Example #1
Source Project: Mastering-Machine-Learning-for-Penetration-Testing   Author: PacktPublishing   File: SpamDetection_NLTK.py    License: MIT License 6 votes vote down vote up
def evaluate(training, tesing, classifier):
  print ('Training Accuracy is ' + str(classify.accuracy(classifier,train_set)))
  print ('Testing Accuracy i ' + str(classify.accuracy(classifier,test_set))) 
Example #2
Source Project: luscan-devel   Author: blackye   File: svm.py    License: GNU General Public License v2.0 5 votes vote down vote up
def demo():

    def gender_features(word):
        return {'last_letter': word[-1], 'penultimate_letter': word[-2]}

    from nltk.classify import accuracy
    from nltk.corpus import names


    import random
    names = ([(name, 'male') for name in names.words('male.txt')] +
             [(name, 'female') for name in names.words('female.txt')])
    import random
    random.seed(60221023)
    random.shuffle(names)

    featuresets = [(gender_features(n), g) for (n,g) in names]
    train_set, test_set = featuresets[500:], featuresets[:500]

    print '--- nltk.classify.svm demo ---'
    print 'Number of training examples:', len(train_set)
    classifier = SvmClassifier.train(train_set)
    print 'Total SVM dimensions:', len(classifier._svmfeatureindex)
    print 'Label mapping:', classifier._labelmapping
    print '--- Processing an example instance ---'
    print 'Reference instance:', names[0]
    print 'NLTK-format features:\n    ' + str(test_set[0])
    print 'SVMlight-format features:\n    ' + str(map_instance_to_svm(test_set[0], classifier._labelmapping, classifier._svmfeatureindex))
    distr = classifier.prob_classify(test_set[0][0])
    print 'Instance classification and confidence:', distr.max(), distr.prob(distr.max())
    print '--- Measuring classifier performance ---'
    print 'Overall accuracy:', accuracy(classifier, test_set)