Python sklearn.impute() Examples
The following are 2
code examples of sklearn.impute().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn
, or try the search function
.
Example #1
Source File: simple_imputer.py From lale with Apache License 2.0 | 5 votes |
def __init__(self, missing_values=None, strategy='mean', fill_value=None, verbose=0, copy=True): self._hyperparams = { 'missing_values': missing_values, 'strategy': strategy, 'fill_value': fill_value, 'verbose': verbose, 'copy': copy} self._wrapped_model = sklearn.impute.SimpleImputer(**self._hyperparams)
Example #2
Source File: classical.py From netharn with Apache License 2.0 | 4 votes |
def _make_est_func(self): import sklearn from sklearn import multiclass # NOQA from sklearn import ensemble # NOQA from sklearn import neural_network # NOQA from sklearn import svm # NOQA from sklearn import preprocessing # NOQA from sklearn import pipeline # NOQA from functools import partial wrap_type = self.wrap_type est_type = self.est_type multiclass_wrapper = { None: ub.identity, 'OVR': sklearn.multiclass.OneVsRestClassifier, 'OVO': sklearn.multiclass.OneVsOneClassifier, }[wrap_type] est_class = { 'RF': sklearn.ensemble.RandomForestClassifier, 'SVC': sklearn.svm.SVC, 'Logit': partial(sklearn.linear_model.LogisticRegression, solver='lbfgs'), 'MLP': sklearn.neural_network.MLPClassifier, }[est_type] est_kw = self.est_kw try: from sklearn.impute import SimpleImputer Imputer = SimpleImputer import numpy as np NAN = np.nan except Exception: from sklearn.preprocessing import Imputer NAN = 'NaN' if est_type == 'MLP': def make_estimator(): pipe = sklearn.pipeline.Pipeline([ ('inputer', Imputer( missing_values=NAN, strategy='mean')), # ('scale', sklearn.preprocessing.StandardScaler), ('est', est_class(**est_kw)), ]) return multiclass_wrapper(pipe) elif est_type == 'Logit': def make_estimator(): pipe = sklearn.pipeline.Pipeline([ ('inputer', Imputer( missing_values=NAN, strategy='mean')), ('est', est_class(**est_kw)), ]) return multiclass_wrapper(pipe) else: def make_estimator(): return multiclass_wrapper(est_class(**est_kw)) return make_estimator