Python numpy.nanquantile() Examples
The following are 29 code examples for showing how to use numpy.nanquantile(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: hvplot Author: holoviz File: converter.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def _process_symmetric(self, symmetric, clim, check_symmetric_max): if symmetric is not None or clim is not None: return symmetric if is_xarray(self.data): # chunks mean it's lazily loaded; nanquantile will eagerly load if self.data.chunks: return False data = self.data[self.z] if is_xarray_dataarray(data): if data.size > check_symmetric_max: return False else: return False elif self._color_dim: data = self.data[self._color_dim] else: return cmin = np.nanquantile(data, 0.05) cmax = np.nanquantile(data, 0.95) return bool(cmin < 0 and cmax > 0)
Example 2
Project: recruit Author: Frank-qlu File: test_nanfunctions.py License: Apache License 2.0 | 5 votes |
def test_regression(self): ar = np.arange(24).reshape(2, 3, 4).astype(float) ar[0][1] = np.nan assert_equal(np.nanquantile(ar, q=0.5), np.nanpercentile(ar, q=50)) assert_equal(np.nanquantile(ar, q=0.5, axis=0), np.nanpercentile(ar, q=50, axis=0)) assert_equal(np.nanquantile(ar, q=0.5, axis=1), np.nanpercentile(ar, q=50, axis=1)) assert_equal(np.nanquantile(ar, q=[0.5], axis=1), np.nanpercentile(ar, q=[50], axis=1)) assert_equal(np.nanquantile(ar, q=[0.25, 0.5, 0.75], axis=1), np.nanpercentile(ar, q=[25, 50, 75], axis=1))
Example 3
Project: recruit Author: Frank-qlu File: test_nanfunctions.py License: Apache License 2.0 | 5 votes |
def test_basic(self): x = np.arange(8) * 0.5 assert_equal(np.nanquantile(x, 0), 0.) assert_equal(np.nanquantile(x, 1), 3.5) assert_equal(np.nanquantile(x, 0.5), 1.75)
Example 4
Project: recruit Author: Frank-qlu File: test_nanfunctions.py License: Apache License 2.0 | 5 votes |
def test_no_p_overwrite(self): # this is worth retesting, because quantile does not make a copy p0 = np.array([0, 0.75, 0.25, 0.5, 1.0]) p = p0.copy() np.nanquantile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, p0) p0 = p0.tolist() p = p.tolist() np.nanquantile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, p0)
Example 5
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_nanfunctions.py License: MIT License | 5 votes |
def test_regression(self): ar = np.arange(24).reshape(2, 3, 4).astype(float) ar[0][1] = np.nan assert_equal(np.nanquantile(ar, q=0.5), np.nanpercentile(ar, q=50)) assert_equal(np.nanquantile(ar, q=0.5, axis=0), np.nanpercentile(ar, q=50, axis=0)) assert_equal(np.nanquantile(ar, q=0.5, axis=1), np.nanpercentile(ar, q=50, axis=1)) assert_equal(np.nanquantile(ar, q=[0.5], axis=1), np.nanpercentile(ar, q=[50], axis=1)) assert_equal(np.nanquantile(ar, q=[0.25, 0.5, 0.75], axis=1), np.nanpercentile(ar, q=[25, 50, 75], axis=1))
Example 6
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_nanfunctions.py License: MIT License | 5 votes |
def test_basic(self): x = np.arange(8) * 0.5 assert_equal(np.nanquantile(x, 0), 0.) assert_equal(np.nanquantile(x, 1), 3.5) assert_equal(np.nanquantile(x, 0.5), 1.75)
Example 7
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_nanfunctions.py License: MIT License | 5 votes |
def test_no_p_overwrite(self): # this is worth retesting, because quantile does not make a copy p0 = np.array([0, 0.75, 0.25, 0.5, 1.0]) p = p0.copy() np.nanquantile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, p0) p0 = p0.tolist() p = p.tolist() np.nanquantile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, p0)
Example 8
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_nanfunctions.py License: MIT License | 5 votes |
def test_regression(self): ar = np.arange(24).reshape(2, 3, 4).astype(float) ar[0][1] = np.nan assert_equal(np.nanquantile(ar, q=0.5), np.nanpercentile(ar, q=50)) assert_equal(np.nanquantile(ar, q=0.5, axis=0), np.nanpercentile(ar, q=50, axis=0)) assert_equal(np.nanquantile(ar, q=0.5, axis=1), np.nanpercentile(ar, q=50, axis=1)) assert_equal(np.nanquantile(ar, q=[0.5], axis=1), np.nanpercentile(ar, q=[50], axis=1)) assert_equal(np.nanquantile(ar, q=[0.25, 0.5, 0.75], axis=1), np.nanpercentile(ar, q=[25, 50, 75], axis=1))
Example 9
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_nanfunctions.py License: MIT License | 5 votes |
def test_basic(self): x = np.arange(8) * 0.5 assert_equal(np.nanquantile(x, 0), 0.) assert_equal(np.nanquantile(x, 1), 3.5) assert_equal(np.nanquantile(x, 0.5), 1.75)
Example 10
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_nanfunctions.py License: MIT License | 5 votes |
def test_no_p_overwrite(self): # this is worth retesting, because quantile does not make a copy p0 = np.array([0, 0.75, 0.25, 0.5, 1.0]) p = p0.copy() np.nanquantile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, p0) p0 = p0.tolist() p = p.tolist() np.nanquantile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, p0)
Example 11
Project: predictive-maintenance-using-machine-learning Author: awslabs File: test_nanfunctions.py License: Apache License 2.0 | 5 votes |
def test_regression(self): ar = np.arange(24).reshape(2, 3, 4).astype(float) ar[0][1] = np.nan assert_equal(np.nanquantile(ar, q=0.5), np.nanpercentile(ar, q=50)) assert_equal(np.nanquantile(ar, q=0.5, axis=0), np.nanpercentile(ar, q=50, axis=0)) assert_equal(np.nanquantile(ar, q=0.5, axis=1), np.nanpercentile(ar, q=50, axis=1)) assert_equal(np.nanquantile(ar, q=[0.5], axis=1), np.nanpercentile(ar, q=[50], axis=1)) assert_equal(np.nanquantile(ar, q=[0.25, 0.5, 0.75], axis=1), np.nanpercentile(ar, q=[25, 50, 75], axis=1))
Example 12
Project: predictive-maintenance-using-machine-learning Author: awslabs File: test_nanfunctions.py License: Apache License 2.0 | 5 votes |
def test_basic(self): x = np.arange(8) * 0.5 assert_equal(np.nanquantile(x, 0), 0.) assert_equal(np.nanquantile(x, 1), 3.5) assert_equal(np.nanquantile(x, 0.5), 1.75)
Example 13
Project: predictive-maintenance-using-machine-learning Author: awslabs File: test_nanfunctions.py License: Apache License 2.0 | 5 votes |
def test_no_p_overwrite(self): # this is worth retesting, because quantile does not make a copy p0 = np.array([0, 0.75, 0.25, 0.5, 1.0]) p = p0.copy() np.nanquantile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, p0) p0 = p0.tolist() p = p.tolist() np.nanquantile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, p0)
Example 14
Project: pySINDy Author: luckystarufo File: test_nanfunctions.py License: MIT License | 5 votes |
def test_regression(self): ar = np.arange(24).reshape(2, 3, 4).astype(float) ar[0][1] = np.nan assert_equal(np.nanquantile(ar, q=0.5), np.nanpercentile(ar, q=50)) assert_equal(np.nanquantile(ar, q=0.5, axis=0), np.nanpercentile(ar, q=50, axis=0)) assert_equal(np.nanquantile(ar, q=0.5, axis=1), np.nanpercentile(ar, q=50, axis=1)) assert_equal(np.nanquantile(ar, q=[0.5], axis=1), np.nanpercentile(ar, q=[50], axis=1)) assert_equal(np.nanquantile(ar, q=[0.25, 0.5, 0.75], axis=1), np.nanpercentile(ar, q=[25, 50, 75], axis=1))
Example 15
Project: pySINDy Author: luckystarufo File: test_nanfunctions.py License: MIT License | 5 votes |
def test_basic(self): x = np.arange(8) * 0.5 assert_equal(np.nanquantile(x, 0), 0.) assert_equal(np.nanquantile(x, 1), 3.5) assert_equal(np.nanquantile(x, 0.5), 1.75)
Example 16
Project: pySINDy Author: luckystarufo File: test_nanfunctions.py License: MIT License | 5 votes |
def test_no_p_overwrite(self): # this is worth retesting, because quantile does not make a copy p0 = np.array([0, 0.75, 0.25, 0.5, 1.0]) p = p0.copy() np.nanquantile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, p0) p0 = p0.tolist() p = p.tolist() np.nanquantile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, p0)
Example 17
Project: coffeegrindsize Author: jgagneastro File: test_nanfunctions.py License: MIT License | 5 votes |
def test_regression(self): ar = np.arange(24).reshape(2, 3, 4).astype(float) ar[0][1] = np.nan assert_equal(np.nanquantile(ar, q=0.5), np.nanpercentile(ar, q=50)) assert_equal(np.nanquantile(ar, q=0.5, axis=0), np.nanpercentile(ar, q=50, axis=0)) assert_equal(np.nanquantile(ar, q=0.5, axis=1), np.nanpercentile(ar, q=50, axis=1)) assert_equal(np.nanquantile(ar, q=[0.5], axis=1), np.nanpercentile(ar, q=[50], axis=1)) assert_equal(np.nanquantile(ar, q=[0.25, 0.5, 0.75], axis=1), np.nanpercentile(ar, q=[25, 50, 75], axis=1))
Example 18
Project: coffeegrindsize Author: jgagneastro File: test_nanfunctions.py License: MIT License | 5 votes |
def test_basic(self): x = np.arange(8) * 0.5 assert_equal(np.nanquantile(x, 0), 0.) assert_equal(np.nanquantile(x, 1), 3.5) assert_equal(np.nanquantile(x, 0.5), 1.75)
Example 19
Project: coffeegrindsize Author: jgagneastro File: test_nanfunctions.py License: MIT License | 5 votes |
def test_no_p_overwrite(self): # this is worth retesting, because quantile does not make a copy p0 = np.array([0, 0.75, 0.25, 0.5, 1.0]) p = p0.copy() np.nanquantile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, p0) p0 = p0.tolist() p = p.tolist() np.nanquantile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, p0)
Example 20
Project: Carnets Author: holzschu File: test_quantity_non_ufuncs.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_nanquantile(self): self.check(np.nanquantile, 0.5) o = np.nanquantile(self.q, 50 * u.percent) expected = np.nanquantile(self.q.value, 0.5) * u.m assert np.all(o == expected)
Example 21
Project: Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda Author: PacktPublishing File: test_nanfunctions.py License: MIT License | 5 votes |
def test_regression(self): ar = np.arange(24).reshape(2, 3, 4).astype(float) ar[0][1] = np.nan assert_equal(np.nanquantile(ar, q=0.5), np.nanpercentile(ar, q=50)) assert_equal(np.nanquantile(ar, q=0.5, axis=0), np.nanpercentile(ar, q=50, axis=0)) assert_equal(np.nanquantile(ar, q=0.5, axis=1), np.nanpercentile(ar, q=50, axis=1)) assert_equal(np.nanquantile(ar, q=[0.5], axis=1), np.nanpercentile(ar, q=[50], axis=1)) assert_equal(np.nanquantile(ar, q=[0.25, 0.5, 0.75], axis=1), np.nanpercentile(ar, q=[25, 50, 75], axis=1))
Example 22
Project: Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda Author: PacktPublishing File: test_nanfunctions.py License: MIT License | 5 votes |
def test_basic(self): x = np.arange(8) * 0.5 assert_equal(np.nanquantile(x, 0), 0.) assert_equal(np.nanquantile(x, 1), 3.5) assert_equal(np.nanquantile(x, 0.5), 1.75)
Example 23
Project: Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda Author: PacktPublishing File: test_nanfunctions.py License: MIT License | 5 votes |
def test_no_p_overwrite(self): # this is worth retesting, because quantile does not make a copy p0 = np.array([0, 0.75, 0.25, 0.5, 1.0]) p = p0.copy() np.nanquantile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, p0) p0 = p0.tolist() p = p.tolist() np.nanquantile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, p0)
Example 24
Project: twitter-stock-recommendation Author: alvarobartt File: test_nanfunctions.py License: MIT License | 5 votes |
def test_regression(self): ar = np.arange(24).reshape(2, 3, 4).astype(float) ar[0][1] = np.nan assert_equal(np.nanquantile(ar, q=0.5), np.nanpercentile(ar, q=50)) assert_equal(np.nanquantile(ar, q=0.5, axis=0), np.nanpercentile(ar, q=50, axis=0)) assert_equal(np.nanquantile(ar, q=0.5, axis=1), np.nanpercentile(ar, q=50, axis=1)) assert_equal(np.nanquantile(ar, q=[0.5], axis=1), np.nanpercentile(ar, q=[50], axis=1)) assert_equal(np.nanquantile(ar, q=[0.25, 0.5, 0.75], axis=1), np.nanpercentile(ar, q=[25, 50, 75], axis=1))
Example 25
Project: twitter-stock-recommendation Author: alvarobartt File: test_nanfunctions.py License: MIT License | 5 votes |
def test_basic(self): x = np.arange(8) * 0.5 assert_equal(np.nanquantile(x, 0), 0.) assert_equal(np.nanquantile(x, 1), 3.5) assert_equal(np.nanquantile(x, 0.5), 1.75)
Example 26
Project: twitter-stock-recommendation Author: alvarobartt File: test_nanfunctions.py License: MIT License | 5 votes |
def test_no_p_overwrite(self): # this is worth retesting, because quantile does not make a copy p0 = np.array([0, 0.75, 0.25, 0.5, 1.0]) p = p0.copy() np.nanquantile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, p0) p0 = p0.tolist() p = p.tolist() np.nanquantile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, p0)
Example 27
Project: HiCExplorer Author: deeptools File: hicCompartmentalization.py License: GNU General Public License v3.0 | 4 votes |
def main(args=None): """ Main function to generate the polarization plot. """ args = parse_arguments().parse_args(args) pc1 = pd.read_table(args.pca, header=None, sep="\t", dtype={0: "object", 1: "Int64", 2: "Int64", 3: "float32"}) pc1 = pc1.rename(columns={0: "chr", 1: "start", 2: "end", 3: "pc1"}) if args.outliers != 0: quantile = [args.outliers / 100, (100 - args.outliers) / 100] boundaries = np.nanquantile(pc1['pc1'].values.astype(float), quantile) quantiled_bins = np.linspace(boundaries[0], boundaries[1], args.quantile) else: quantile = [j / (args.quantile - 1) for j in range(0, args.quantile)] quantiled_bins = np.nanquantile(pc1['pc1'].values.astype(float), quantile) pc1["quantile"] = np.searchsorted(quantiled_bins, pc1['pc1'].values.astype(float), side="right") pc1.loc[pc1["pc1"] == np.nan]["quantile"] = args.quantile + 1 polarization_ratio = [] output_matrices = [] labels = [] for matrix in args.obsexp_matrices: obs_exp = hm.hiCMatrix(matrix) name = ".".join(matrix.split("/")[-1].split(".")[0:-1]) labels.append(name) normalised_sum_per_quantile = count_interactions(obs_exp, pc1, args.quantile, args.offset) normalised_sum_per_quantile = np.nan_to_num(normalised_sum_per_quantile) if args.outputMatrix: output_matrices.append(normalised_sum_per_quantile) polarization_ratio.append(within_vs_between_compartments( normalised_sum_per_quantile, args.quantile)) if args.outputMatrix: np.savez(args.outputMatrix, [matrix for matrix in output_matrices]) plot_polarization_ratio( polarization_ratio, args.outputFileName, labels, args.quantile)
Example 28
Project: scikit-lego Author: koaning File: columncapper.py License: MIT License | 4 votes |
def fit(self, X, y=None): """ Computes the quantiles for each column of ``X``. :type X: pandas.DataFrame or numpy.ndarray :param X: The column(s) from which the capping limit(s) will be computed. :param y: Ignored. :rtype: sklego.preprocessing.ColumnCapper :returns: The fitted object. :raises: ``ValueError`` if ``X`` contains non-numeric columns """ X = check_array( X, copy=True, force_all_finite=False, dtype=FLOAT_DTYPES, estimator=self ) # If X contains infs, we need to replace them by nans before computing quantiles np.putmask(X, (X == np.inf) | (X == -np.inf), np.nan) # There should be no column containing only nan cells at this point. If that's not the case, # it means that the user asked ColumnCapper to fit some column containing only nan or inf cells. nans_mask = np.isnan(X) invalid_columns_mask = ( nans_mask.sum(axis=0) == X.shape[0] ) # Contains as many nans as rows if invalid_columns_mask.any(): raise ValueError( "ColumnCapper cannot fit columns containing only inf/nan values" ) q = [quantile_limit / 100 for quantile_limit in self.quantile_range] self.quantiles_ = np.nanquantile( a=X, q=q, axis=0, overwrite_input=True, interpolation=self.interpolation ) # Saving the number of columns to ensure coherence between fit and transform inputs self.n_columns_ = X.shape[1] return self
Example 29
Project: xclim Author: Ouranosinc File: utils.py License: Apache License 2.0 | 4 votes |
def map_cdf( x: xr.DataArray, y: xr.DataArray, y_value: xr.DataArray, *, group: Union[str, Grouper] = "time", skipna: bool = False, ): """Return the value in `x` with the same CDF as `y_value` in `y`. Parameters ---------- x : xr.DataArray Values from which to pick y : xr.DataArray Reference values giving the ranking y_value : float, array Value within the support of `y`. dim : str Dimension along which to compute quantile. Returns ------- array Quantile of `x` with the same CDF as `y_value` in `y`. """ def _map_cdf_1d(x, y, y_value, skipna=False): q = _ecdf_1d(y, y_value) _func = np.nanquantile if skipna else np.quantile return _func(x, q=q) def _map_cdf_group(gr, y_value, dim=["time"], skipna=False): return xr.apply_ufunc( _map_cdf_1d, gr.x, gr.y, input_core_dims=[dim] * 2, output_core_dims=[["x"]], vectorize=True, keep_attrs=True, kwargs={"y_value": y_value, "skipna": skipna}, dask="parallelized", output_dtypes=[gr.x.dtype], ) return group.apply( _map_cdf_group, {"x": x, "y": y}, y_value=np.atleast_1d(y_value), skipna=skipna, )