Python numpy.string() Examples
The following are 30 code examples for showing how to use numpy.string(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: VASPy Author: PytLab File: matstudio.py License: MIT License | 6 votes |
def get_bases(self): "get bases from SpaceGroup element" # lattice parameters bases = [] for elem in self.tree.iter(): if elem.tag == 'SpaceGroup': for attr in ['AVector', 'BVector', 'CVector']: basis = elem.attrib[attr] # string basis = [float(i.strip()) for i in basis.split(',')] bases.append(basis) break bases = np.array(bases) #set base constant as 1.0 self.bases_const = 1.0 return bases
Example 2
Project: VASPy Author: PytLab File: matstudio.py License: MIT License | 6 votes |
def __init__(self, filename): """ Create a Material Studio *.arc file class. Example: >>> a = ArcFile("00-05.arc") Class attributes descriptions ================================================================ Attribute Description =============== ============================================== filename string, name of arc file. coords_iterator generator, yield Cartisan coordinates in numpy array. lengths list of float, lengths of lattice axes. angles list of float, angles of lattice axes. ================ ============================================== """ super(ArcFile, self).__init__(filename) # Set logger. self.__logger = logging.getLogger("vaspy.ArcFile")
Example 3
Project: VASPy Author: PytLab File: atomco.py License: MIT License | 6 votes |
def __init__(self, filename='XDATCAR'): """ Class to generate XDATCAR objects. Example: >>> a = XdatCar() Class attributes descriptions ======================================================================= Attribute Description ============ ======================================================= filename string, name of the file the direct coordiante data stored in bases_const float, lattice bases constant bases np.array, bases of POSCAR natom int, the number of total atom number atom_types list of strings, atom types tf list of list, T&F info of atoms info_nline int, line numbers of lattice info ============ ======================================================= """ AtomCo.__init__(self, filename) self.info_nline = 7 # line numbers of lattice info self.load()
Example 4
Project: recruit Author: Frank-qlu File: pytables.py License: Apache License 2.0 | 6 votes |
def validate_col(self, itemsize=None): """ validate this column: return the compared against itemsize """ # validate this column for string truncation (or reset to the max size) if _ensure_decoded(self.kind) == u'string': c = self.col if c is not None: if itemsize is None: itemsize = self.itemsize if c.itemsize < itemsize: raise ValueError( "Trying to store a string with len [{itemsize}] in " "[{cname}] column but\nthis column has a limit of " "[{c_itemsize}]!\nConsider using min_itemsize to " "preset the sizes on these columns".format( itemsize=itemsize, cname=self.cname, c_itemsize=c.itemsize)) return c.itemsize return None
Example 5
Project: recruit Author: Frank-qlu File: pytables.py License: Apache License 2.0 | 6 votes |
def generate(self, where): """ where can be a : dict,list,tuple,string """ if where is None: return None q = self.table.queryables() try: return Expr(where, queryables=q, encoding=self.table.encoding) except NameError: # raise a nice message, suggesting that the user should use # data_columns raise ValueError( "The passed where expression: {0}\n" " contains an invalid variable reference\n" " all of the variable references must be a " "reference to\n" " an axis (e.g. 'index' or 'columns'), or a " "data_column\n" " The currently defined references are: {1}\n" .format(where, ','.join(q.keys())) )
Example 6
Project: lambda-packs Author: ryfeus File: dtypes.py License: MIT License | 6 votes |
def min(self): """Returns the minimum representable value in this data type. Raises: TypeError: if this is a non-numeric, unordered, or quantized type. """ if (self.is_quantized or self.base_dtype in (bool, string, complex64, complex128)): raise TypeError("Cannot find minimum value of %s." % self) # there is no simple way to get the min value of a dtype, we have to check # float and int types separately try: return np.finfo(self.as_numpy_dtype()).min except: # bare except as possible raises by finfo not documented try: return np.iinfo(self.as_numpy_dtype()).min except: raise TypeError("Cannot find minimum value of %s." % self)
Example 7
Project: lambda-packs Author: ryfeus File: dtypes.py License: MIT License | 6 votes |
def max(self): """Returns the maximum representable value in this data type. Raises: TypeError: if this is a non-numeric, unordered, or quantized type. """ if (self.is_quantized or self.base_dtype in (bool, string, complex64, complex128)): raise TypeError("Cannot find maximum value of %s." % self) # there is no simple way to get the max value of a dtype, we have to check # float and int types separately try: return np.finfo(self.as_numpy_dtype()).max except: # bare except as possible raises by finfo not documented try: return np.iinfo(self.as_numpy_dtype()).max except: raise TypeError("Cannot find maximum value of %s." % self)
Example 8
Project: auto-alt-text-lambda-api Author: abhisuri97 File: dtypes.py License: MIT License | 6 votes |
def min(self): """Returns the minimum representable value in this data type. Raises: TypeError: if this is a non-numeric, unordered, or quantized type. """ if (self.is_quantized or self.base_dtype in (bool, string, complex64, complex128)): raise TypeError("Cannot find minimum value of %s." % self) # there is no simple way to get the min value of a dtype, we have to check # float and int types separately try: return np.finfo(self.as_numpy_dtype()).min except: # bare except as possible raises by finfo not documented try: return np.iinfo(self.as_numpy_dtype()).min except: raise TypeError("Cannot find minimum value of %s." % self)
Example 9
Project: auto-alt-text-lambda-api Author: abhisuri97 File: dtypes.py License: MIT License | 6 votes |
def max(self): """Returns the maximum representable value in this data type. Raises: TypeError: if this is a non-numeric, unordered, or quantized type. """ if (self.is_quantized or self.base_dtype in (bool, string, complex64, complex128)): raise TypeError("Cannot find maximum value of %s." % self) # there is no simple way to get the max value of a dtype, we have to check # float and int types separately try: return np.finfo(self.as_numpy_dtype()).max except: # bare except as possible raises by finfo not documented try: return np.iinfo(self.as_numpy_dtype()).max except: raise TypeError("Cannot find maximum value of %s." % self)
Example 10
Project: vnpy_crypto Author: birforce File: pytables.py License: MIT License | 6 votes |
def validate_col(self, itemsize=None): """ validate this column: return the compared against itemsize """ # validate this column for string truncation (or reset to the max size) if _ensure_decoded(self.kind) == u('string'): c = self.col if c is not None: if itemsize is None: itemsize = self.itemsize if c.itemsize < itemsize: raise ValueError( "Trying to store a string with len [%s] in [%s] " "column but\nthis column has a limit of [%s]!\n" "Consider using min_itemsize to preset the sizes on " "these columns" % (itemsize, self.cname, c.itemsize)) return c.itemsize return None
Example 11
Project: vnpy_crypto Author: birforce File: pytables.py License: MIT License | 6 votes |
def generate(self, where): """ where can be a : dict,list,tuple,string """ if where is None: return None q = self.table.queryables() try: return Expr(where, queryables=q, encoding=self.table.encoding) except NameError: # raise a nice message, suggesting that the user should use # data_columns raise ValueError( "The passed where expression: {0}\n" " contains an invalid variable reference\n" " all of the variable references must be a " "reference to\n" " an axis (e.g. 'index' or 'columns'), or a " "data_column\n" " The currently defined references are: {1}\n" .format(where, ','.join(q.keys())) )
Example 12
Project: deep_image_model Author: tobegit3hub File: dtypes.py License: Apache License 2.0 | 6 votes |
def min(self): """Returns the minimum representable value in this data type. Raises: TypeError: if this is a non-numeric, unordered, or quantized type. """ if (self.is_quantized or self.base_dtype in (bool, string, complex64, complex128)): raise TypeError("Cannot find minimum value of %s." % self) # there is no simple way to get the min value of a dtype, we have to check # float and int types separately try: return np.finfo(self.as_numpy_dtype()).min except: # bare except as possible raises by finfo not documented try: return np.iinfo(self.as_numpy_dtype()).min except: raise TypeError("Cannot find minimum value of %s." % self)
Example 13
Project: deep_image_model Author: tobegit3hub File: dtypes.py License: Apache License 2.0 | 6 votes |
def max(self): """Returns the maximum representable value in this data type. Raises: TypeError: if this is a non-numeric, unordered, or quantized type. """ if (self.is_quantized or self.base_dtype in (bool, string, complex64, complex128)): raise TypeError("Cannot find maximum value of %s." % self) # there is no simple way to get the max value of a dtype, we have to check # float and int types separately try: return np.finfo(self.as_numpy_dtype()).max except: # bare except as possible raises by finfo not documented try: return np.iinfo(self.as_numpy_dtype()).max except: raise TypeError("Cannot find maximum value of %s." % self)
Example 14
Project: predictive-maintenance-using-machine-learning Author: awslabs File: pytables.py License: Apache License 2.0 | 6 votes |
def validate_col(self, itemsize=None): """ validate this column: return the compared against itemsize """ # validate this column for string truncation (or reset to the max size) if _ensure_decoded(self.kind) == u'string': c = self.col if c is not None: if itemsize is None: itemsize = self.itemsize if c.itemsize < itemsize: raise ValueError( "Trying to store a string with len [{itemsize}] in " "[{cname}] column but\nthis column has a limit of " "[{c_itemsize}]!\nConsider using min_itemsize to " "preset the sizes on these columns".format( itemsize=itemsize, cname=self.cname, c_itemsize=c.itemsize)) return c.itemsize return None
Example 15
Project: predictive-maintenance-using-machine-learning Author: awslabs File: pytables.py License: Apache License 2.0 | 6 votes |
def generate(self, where): """ where can be a : dict,list,tuple,string """ if where is None: return None q = self.table.queryables() try: return Expr(where, queryables=q, encoding=self.table.encoding) except NameError: # raise a nice message, suggesting that the user should use # data_columns raise ValueError( "The passed where expression: {0}\n" " contains an invalid variable reference\n" " all of the variable references must be a " "reference to\n" " an axis (e.g. 'index' or 'columns'), or a " "data_column\n" " The currently defined references are: {1}\n" .format(where, ','.join(q.keys())) )
Example 16
Project: tensorboard Author: tensorflow File: dtypes.py License: Apache License 2.0 | 6 votes |
def min(self): """Returns the minimum representable value in this data type. Raises: TypeError: if this is a non-numeric, unordered, or quantized type. """ if self.is_quantized or self.base_dtype in ( bool, string, complex64, complex128, ): raise TypeError("Cannot find minimum value of %s." % self) # there is no simple way to get the min value of a dtype, we have to check # float and int types separately try: return np.finfo(self.as_numpy_dtype).min except: # bare except as possible raises by finfo not documented try: return np.iinfo(self.as_numpy_dtype).min except: if self.base_dtype == bfloat16: return _np_bfloat16(float.fromhex("-0x1.FEp127")) raise TypeError("Cannot find minimum value of %s." % self)
Example 17
Project: tensorboard Author: tensorflow File: dtypes.py License: Apache License 2.0 | 6 votes |
def max(self): """Returns the maximum representable value in this data type. Raises: TypeError: if this is a non-numeric, unordered, or quantized type. """ if self.is_quantized or self.base_dtype in ( bool, string, complex64, complex128, ): raise TypeError("Cannot find maximum value of %s." % self) # there is no simple way to get the max value of a dtype, we have to check # float and int types separately try: return np.finfo(self.as_numpy_dtype).max except: # bare except as possible raises by finfo not documented try: return np.iinfo(self.as_numpy_dtype).max except: if self.base_dtype == bfloat16: return _np_bfloat16(float.fromhex("0x1.FEp127")) raise TypeError("Cannot find maximum value of %s." % self)
Example 18
Project: VASPy Author: PytLab File: matstudio.py License: MIT License | 5 votes |
def __init__(self, filename): """ Create a Material Studio *.xsd file class. Example: >>> a = XsdFile(filename='ts.xsd') Class attributes descriptions ======================================================================= Attribute Description ============ ======================================================= filename string, name of the file the direct coordiante data stored in natom int, the number of total atom number atom_types list of strings, atom types atom_numbers list of int, atom number of atoms in atoms atom_names list of string, Value of attribute 'Name' in Atom3d tag. tf np.array, T & F info for atoms, dtype=np.string data np.array, coordinates of atoms, dtype=float64 bases np.array, basis vectors of space, dtype=np.float64 ============ ======================================================= """ super(XsdFile, self).__init__(filename) # Set logger. self.__logger = logging.getLogger("vaspy.XsdFile") # Load data in xsd. self.load()
Example 19
Project: VASPy Author: PytLab File: matstudio.py License: MIT License | 5 votes |
def get_name_info(self): """ 获取文件中能量,力等数据. """ # Get info string. info = None for elem in self.tree.iter("SymmetrySystem"): info = elem.attrib.get('Name') break if info is None: return # Get thermo data. fieldnames = ["energy", "force", "magnetism", "path"] try: for key, value in zip(fieldnames, info.split()): if key != "path": data = float(value.split(':')[-1].strip()) else: data = value.split(":")[-1].strip() setattr(self, key, data) except: # Set default values. self.force, self.energy, self.magnetism = 0.0, 0.0, 0.0 msg = "No data info in Name property '{}'".format(info) self.__logger.warning(msg) finally: self.path = getcwd()
Example 20
Project: VASPy Author: PytLab File: matstudio.py License: MIT License | 5 votes |
def update_bases(self): "update bases value in ElementTree" bases = self.bases.tolist() bases_str = [] # float -> string for basis in bases: xyz = ','.join([str(v) for v in basis]) # vector string bases_str.append(xyz) for elem in self.tree.iter('SpaceGroup'): elem.set('AVector', bases_str[0]) elem.set('BVector', bases_str[1]) elem.set('CVector', bases_str[2]) break
Example 21
Project: VASPy Author: PytLab File: atomco.py License: MIT License | 5 votes |
def load(self, content_list): """ Load all data in xyz file. """ # Total number of all atoms. natom = int(content_list[0].strip()) # The iteration step for this xyz file. step = int(str2list(content_list[1])[-1]) # Get atom coordinate and number info data_list = [str2list(line) for line in content_list[2:]] data_array = np.array(data_list) # dtype=np.string atoms_list = list(data_array[:, 0]) # 1st column data = np.float64(data_array[:, 1:]) # rest columns # Atom number for each atom atom_types = [] for atom in atoms_list: if atom not in atom_types: atom_types.append(atom) atom_numbers = [atoms_list.count(atom) for atom in atom_types] # Set attributes. self.natom = natom self.step = step self.atom_types = atom_types self.atom_numbers = atom_numbers self.data = data
Example 22
Project: VASPy Author: PytLab File: atomco.py License: MIT License | 5 votes |
def __init__(self, filename='POSCAR'): """ Class to generate POSCAR or CONTCAR-like objects. Example: >>> a = PosCar(filename='POSCAR') Class attributes descriptions ======================================================================= Attribute Description ============ ======================================================= filename string, name of the file the direct coordiante data stored in bases_const float, lattice bases constant bases np.array, bases of POSCAR natom int, the number of total atom number atom_types list of strings, atom types atom_numbers list of int, same shape with atoms atom number of atoms in atoms tf list of list, T&F info of atoms data np.array, coordinates of atoms, dtype=float64 ============ ======================================================= """ AtomCo.__init__(self, filename) # Load all data in file self.load() self.verify()
Example 23
Project: VASPy Author: PytLab File: atomco.py License: MIT License | 5 votes |
def __init__(self, filename): """ Class for *.cif files. Example: >>> a = CifFile(filename='ts.cif') Class attributes descriptions ======================================================================= Attribute Description =============== ==================================================== filename string, name of the file the direct coordiante data stored in natom int, the number of total atom number atom_types list of strings, atom types atom_numbers list of int, atom number of atoms in atoms atom_names list of string, Value of attribute 'Name' in Atom3d tag. data np.array, coordinates of atoms, dtype=float64 cell_length_a float, length of cell vector a cell_length_a float, length of cell vector b cell_length_c float, length of cell vector c cell_angle_alpha float, angle of cell alpha cell_angle_beta float, angle of cell beta cell_angle_gamma float, angle of cell gamma =============== ==================================================== """ super(CifFile, self).__init__(filename) self.__logger = logging.getLogger("vaspy.CifCar") self.load()
Example 24
Project: recruit Author: Frank-qlu File: pytables.py License: Apache License 2.0 | 5 votes |
def _ensure_str(name): """Ensure that an index / column name is a str (python 3) or unicode (python 2); otherwise they may be np.string dtype. Non-string dtypes are passed through unchanged. https://github.com/pandas-dev/pandas/issues/13492 """ if isinstance(name, compat.string_types): name = compat.text_type(name) return name
Example 25
Project: recruit Author: Frank-qlu File: pytables.py License: Apache License 2.0 | 5 votes |
def maybe_set_size(self, min_itemsize=None): """ maybe set a string col itemsize: min_itemsize can be an integer or a dict with this columns name with an integer size """ if _ensure_decoded(self.kind) == u'string': if isinstance(min_itemsize, dict): min_itemsize = min_itemsize.get(self.name) if min_itemsize is not None and self.typ.itemsize < min_itemsize: self.typ = _tables( ).StringCol(itemsize=min_itemsize, pos=self.pos)
Example 26
Project: recruit Author: Frank-qlu File: pytables.py License: Apache License 2.0 | 5 votes |
def write_metadata(self, key, values): """ write out a meta data array to the key as a fixed-format Series Parameters ---------- key : string values : ndarray """ values = Series(values) self.parent.put(self._get_metadata_path(key), values, format='table', encoding=self.encoding, errors=self.errors, nan_rep=self.nan_rep)
Example 27
Project: recruit Author: Frank-qlu File: pytables.py License: Apache License 2.0 | 5 votes |
def _set_tz(values, tz, preserve_UTC=False, coerce=False): """ coerce the values to a DatetimeIndex if tz is set preserve the input shape if possible Parameters ---------- values : ndarray tz : string/pickled tz object preserve_UTC : boolean, preserve the UTC of the result coerce : if we do not have a passed timezone, coerce to M8[ns] ndarray """ if tz is not None: name = getattr(values, 'name', None) values = values.ravel() tz = timezones.get_timezone(_ensure_decoded(tz)) values = DatetimeIndex(values, name=name) if values.tz is None: values = values.tz_localize('UTC').tz_convert(tz) if preserve_UTC: if tz == 'UTC': values = list(values) elif coerce: values = np.asarray(values, dtype='M8[ns]') return values
Example 28
Project: recruit Author: Frank-qlu File: pytables.py License: Apache License 2.0 | 5 votes |
def _unconvert_index(data, kind, encoding=None, errors='strict'): kind = _ensure_decoded(kind) if kind == u'datetime64': index = DatetimeIndex(data) elif kind == u'timedelta64': index = TimedeltaIndex(data) elif kind == u'datetime': index = np.asarray([datetime.fromtimestamp(v) for v in data], dtype=object) elif kind == u'date': try: index = np.asarray( [date.fromordinal(v) for v in data], dtype=object) except (ValueError): index = np.asarray( [date.fromtimestamp(v) for v in data], dtype=object) elif kind in (u'integer', u'float'): index = np.asarray(data) elif kind in (u'string'): index = _unconvert_string_array(data, nan_rep=None, encoding=encoding, errors=errors) elif kind == u'object': index = np.asarray(data[0]) else: # pragma: no cover raise ValueError('unrecognized index type {kind}'.format(kind=kind)) return index
Example 29
Project: recruit Author: Frank-qlu File: pytables.py License: Apache License 2.0 | 5 votes |
def _convert_string_array(data, encoding, errors, itemsize=None): """ we take a string-like that is object dtype and coerce to a fixed size string type Parameters ---------- data : a numpy array of object dtype encoding : None or string-encoding errors : handler for encoding errors itemsize : integer, optional, defaults to the max length of the strings Returns ------- data in a fixed-length string dtype, encoded to bytes if needed """ # encode if needed if encoding is not None and len(data): data = Series(data.ravel()).str.encode( encoding, errors).values.reshape(data.shape) # create the sized dtype if itemsize is None: ensured = ensure_object(data.ravel()) itemsize = max(1, libwriters.max_len_string_array(ensured)) data = np.asarray(data, dtype="S{size}".format(size=itemsize)) return data
Example 30
Project: recruit Author: Frank-qlu File: pytables.py License: Apache License 2.0 | 5 votes |
def _unconvert_string_array(data, nan_rep=None, encoding=None, errors='strict'): """ inverse of _convert_string_array Parameters ---------- data : fixed length string dtyped array nan_rep : the storage repr of NaN, optional encoding : the encoding of the data, optional errors : handler for encoding errors, default 'strict' Returns ------- an object array of the decoded data """ shape = data.shape data = np.asarray(data.ravel(), dtype=object) # guard against a None encoding in PY3 (because of a legacy # where the passed encoding is actually None) encoding = _ensure_encoding(encoding) if encoding is not None and len(data): itemsize = libwriters.max_len_string_array(ensure_object(data)) if compat.PY3: dtype = "U{0}".format(itemsize) else: dtype = "S{0}".format(itemsize) if isinstance(data[0], compat.binary_type): data = Series(data).str.decode(encoding, errors=errors).values else: data = data.astype(dtype, copy=False).astype(object, copy=False) if nan_rep is None: nan_rep = 'nan' data = libwriters.string_array_replace_from_nan_rep(data, nan_rep) return data.reshape(shape)