Python numpy.euler_gamma() Examples

The following are 9 code examples for showing how to use numpy.euler_gamma(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.

You may check out the related API usage on the sidebar.

You may also want to check out all available functions/classes of the module numpy , or try the search function .

Example 1
Project: Mastering-Elasticsearch-7.0   Author: PacktPublishing   File: test_iforest.py    License: MIT License 6 votes vote down vote up
def test_iforest_average_path_length():
    # It tests non-regression for #8549 which used the wrong formula
    # for average path length, strictly for the integer case
    # Updated to check average path length when input is <= 2 (issue #11839)
    result_one = 2.0 * (np.log(4.0) + np.euler_gamma) - 2.0 * 4.0 / 5.0
    result_two = 2.0 * (np.log(998.0) + np.euler_gamma) - 2.0 * 998.0 / 999.0
    assert_allclose(_average_path_length([0]), [0.0])
    assert_allclose(_average_path_length([1]), [0.0])
    assert_allclose(_average_path_length([2]), [1.0])
    assert_allclose(_average_path_length([5]), [result_one])
    assert_allclose(_average_path_length([999]), [result_two])
    assert_allclose(
        _average_path_length(np.array([1, 2, 5, 999])),
        [0.0, 1.0, result_one, result_two],
    )
    # _average_path_length is increasing
    avg_path_length = _average_path_length(np.arange(5))
    assert_array_equal(avg_path_length, np.sort(avg_path_length)) 
Example 2
Project: chainer   Author: chainer   File: test_constants.py    License: MIT License 6 votes vote down vote up
def test_constants():
    assert chainerx.Inf is numpy.Inf
    assert chainerx.Infinity is numpy.Infinity
    assert chainerx.NAN is numpy.NAN
    assert chainerx.NINF is numpy.NINF
    assert chainerx.NZERO is numpy.NZERO
    assert chainerx.NaN is numpy.NaN
    assert chainerx.PINF is numpy.PINF
    assert chainerx.PZERO is numpy.PZERO
    assert chainerx.e is numpy.e
    assert chainerx.euler_gamma is numpy.euler_gamma
    assert chainerx.inf is numpy.inf
    assert chainerx.infty is numpy.infty
    assert chainerx.nan is numpy.nan
    assert chainerx.newaxis is numpy.newaxis
    assert chainerx.pi is numpy.pi 
Example 3
Project: GraphicDesignPatternByPython   Author: Relph1119   File: _continuous_distns.py    License: MIT License 6 votes vote down vote up
def _munp(self, n):
        if n == 1.0:
            return np.log(2) + np.euler_gamma
        elif n == 2.0:
            return np.pi**2 / 2 + (np.log(2) + np.euler_gamma)**2
        elif n == 3.0:
            tmp1 = 1.5 * np.pi**2 * (np.log(2)+np.euler_gamma)
            tmp2 = (np.log(2)+np.euler_gamma)**3
            tmp3 = 14 * sc.zeta(3)
            return tmp1 + tmp2 + tmp3
        elif n == 4.0:
            tmp1 = 4 * 14 * sc.zeta(3) * (np.log(2) + np.euler_gamma)
            tmp2 = 3 * np.pi**2 * (np.log(2) + np.euler_gamma)**2
            tmp3 = (np.log(2) + np.euler_gamma)**4
            tmp4 = 7 * np.pi**4 / 4
            return tmp1 + tmp2 + tmp3 + tmp4
        else:
            # return generic for higher moments
            # return rv_continuous._mom1_sc(self, n, b)
            return self._mom1_sc(n) 
Example 4
Project: Mastering-Elasticsearch-7.0   Author: PacktPublishing   File: iforest.py    License: MIT License 5 votes vote down vote up
def _average_path_length(n_samples_leaf):
    """The average path length in a n_samples iTree, which is equal to
    the average path length of an unsuccessful BST search since the
    latter has the same structure as an isolation tree.
    Parameters
    ----------
    n_samples_leaf : array-like, shape (n_samples,).
        The number of training samples in each test sample leaf, for
        each estimators.

    Returns
    -------
    average_path_length : array, same shape as n_samples_leaf

    """

    n_samples_leaf = check_array(n_samples_leaf, ensure_2d=False)

    n_samples_leaf_shape = n_samples_leaf.shape
    n_samples_leaf = n_samples_leaf.reshape((1, -1))
    average_path_length = np.zeros(n_samples_leaf.shape)

    mask_1 = n_samples_leaf <= 1
    mask_2 = n_samples_leaf == 2
    not_mask = ~np.logical_or(mask_1, mask_2)

    average_path_length[mask_1] = 0.
    average_path_length[mask_2] = 1.
    average_path_length[not_mask] = (
        2.0 * (np.log(n_samples_leaf[not_mask] - 1.0) + np.euler_gamma)
        - 2.0 * (n_samples_leaf[not_mask] - 1.0) / n_samples_leaf[not_mask]
    )

    return average_path_length.reshape(n_samples_leaf_shape) 
Example 5
Project: GraphicDesignPatternByPython   Author: Relph1119   File: _continuous_distns.py    License: MIT License 5 votes vote down vote up
def _stats(self):
        mu = np.log(2) + np.euler_gamma
        mu2 = np.pi**2 / 2
        g1 = 28 * np.sqrt(2) * sc.zeta(3) / np.pi**3
        g2 = 4.
        return mu, mu2, g1, g2 
Example 6
Project: Cirq   Author: quantumlib   File: fidelity_estimation.py    License: Apache License 2.0 5 votes vote down vote up
def log_xeb_fidelity_from_probabilities(
        hilbert_space_dimension: int,
        probabilities: Sequence[float],
) -> float:
    """Logarithmic XEB fidelity estimator.

    Estimates fidelity from ideal probabilities of observed bitstrings.

    See `linear_xeb_fidelity_from_probabilities` for the assumptions made
    by this estimator.

    The mean of this estimator is the true fidelity f and the variance is

        (pi^2/6 - f^2) / M

    where f is the fidelity and M the number of observations, equal to
    len(probabilities). This is better than linear XEB (see above) when
    fidelity is f > 0.32. Since this estimator is unbiased, the variance
    is equal to the mean squared error of the estimator.

    The estimator is intended for use with xeb_fidelity() below.

    Args:
        hilbert_space_dimension: Dimension of the Hilbert space on which
           the channel whose fidelity is being estimated is defined.
        probabilities: Ideal probabilities of bitstrings observed in
            experiment.
    Returns:
        Estimate of fidelity associated with an experimental realization
        of a quantum circuit.
    """
    return (np.log(hilbert_space_dimension) + np.euler_gamma +
            np.mean(np.log(probabilities))) 
Example 7
Project: lenstronomy   Author: sibirrer   File: test_gaussian_ellipse_kappa.py    License: MIT License 5 votes vote down vote up
def test_function(self):
        """
        Test the `function()` method at the spherical limit.

        :return:
        :rtype:
        """
        # almost spherical case
        x = 1.
        y = 1.
        e1, e2 = 5e-5, 0.
        sigma = 1.
        amp = 2.

        f_ = self.gaussian_kappa_ellipse.function(x, y, amp, sigma, e1, e2)

        r2 = x*x + y*y
        f_sphere = amp/(2.*np.pi*sigma**2) * sigma**2 * (np.euler_gamma -
                        expi(-r2/2./sigma**2) + np.log(r2/2./sigma**2))

        npt.assert_almost_equal(f_, f_sphere, decimal=4)

        # spherical case
        e1, e2 = 0., 0.
        f_ = self.gaussian_kappa_ellipse.function(x, y, amp, sigma, e1, e2)

        npt.assert_almost_equal(f_, f_sphere, decimal=4) 
Example 8
Project: pypbo   Author: esvhd   File: pbo.py    License: GNU Affero General Public License v3.0 5 votes vote down vote up
def expected_max(N):
    """
    Expected maximum of IID random variance X_n ~ Z, n = 1,...,N,
    where Z is the CDF of the standard Normal distribution,
    E[MAX_n] = E[max{x_n}]. Computed for a large N.

    """
    if N < 5:
        raise AssertionError("Condition N >> 1 not satisfied.")
    return (1 - np.euler_gamma) * ss.norm.ppf(
        1 - 1.0 / N
    ) + np.euler_gamma * ss.norm.ppf(1 - np.exp(-1) / N) 
Example 9
Project: mixed-anomaly   Author: cubonacci   File: metrics.py    License: Apache License 2.0 5 votes vote down vote up
def average_path_length(sample_size: float) -> float:
    return 2 * (np.log(sample_size - 1) + np.euler_gamma) - 2 * (sample_size - 1) / sample_size