Python tensorflow.keras.regularizers.serialize() Examples
The following are 21
code examples of tensorflow.keras.regularizers.serialize().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.keras.regularizers
, or try the search function
.

Example #1
Source Project: StyleGAN2-Tensorflow-2.0 Author: manicman1999 File: conv_mod.py License: MIT License | 6 votes |
def get_config(self): config = { 'filters': self.filters, 'kernel_size': self.kernel_size, 'strides': self.strides, 'padding': self.padding, 'dilation_rate': self.dilation_rate, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'demod': self.demod } base_config = super(Conv2DMod, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #2
Source Project: bcnn Author: sandialabs File: groupnorm.py License: MIT License | 6 votes |
def get_config(self): config = { "groups": self.groups, "axis": self.axis, "epsilon": self.epsilon, "center": self.center, "scale": self.scale, "beta_initializer": initializers.serialize(self.beta_initializer), "gamma_initializer": initializers.serialize(self.gamma_initializer), "beta_regularizer": regularizers.serialize(self.beta_regularizer), "gamma_regularizer": regularizers.serialize(self.gamma_regularizer), "beta_constraint": constraints.serialize(self.beta_constraint), "gamma_constraint": constraints.serialize(self.gamma_constraint) } base_config = super(GroupNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #3
Source Project: qkeras Author: google File: qconvolutional.py License: Apache License 2.0 | 6 votes |
def get_config(self): config = super(QDepthwiseConv2D, self).get_config() config.pop("filters", None) config.pop("kernel_initializer", None) config.pop("kernel_regularizer", None) config.pop("kernel_constraint", None) config["depth_multiplier"] = self.depth_multiplier config["depthwise_initializer"] = initializers.serialize( self.depthwise_initializer) config["depthwise_regularizer"] = regularizers.serialize( self.depthwise_regularizer) config["depthwise_constraint"] = constraints.serialize( self.depthwise_constraint) config["depthwise_quantizer"] = constraints.serialize( self.depthwise_quantizer_internal) config["bias_quantizer"] = constraints.serialize( self.bias_quantizer_internal) config["depthwise_range"] = self.depthwise_range config["bias_range"] = self.bias_range return config
Example #4
Source Project: TensorNetwork Author: google File: conv2d_mpo.py License: Apache License 2.0 | 6 votes |
def get_config(self) -> dict: config = { 'filters': self.filters, 'kernel_size': self.kernel_size, 'num_nodes': self.num_nodes, 'bond_dim': self.bond_dim, 'strides': self.strides, 'padding': self.padding, 'data_format': self.data_format, 'dilation_rate': self.dilation_rate, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), } base_config = super(Conv2DMPO, self).get_config() config.update(base_config) return config
Example #5
Source Project: 3d-brain-tumor-segmentation Author: vliu15 File: group_norm.py License: Apache License 2.0 | 6 votes |
def get_config(self): config = { 'groups': self.groups, 'axis': self.axis, 'epsilon': self.epsilon, 'center': self.center, 'scale': self.scale, 'beta_initializer': initializers.serialize(self.beta_initializer), 'gamma_initializer': initializers.serialize(self.gamma_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'gamma_regularizer': regularizers.serialize(self.gamma_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_constraint': constraints.serialize(self.gamma_constraint) } base_config = super(GroupNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #6
Source Project: Basic_CNNs_TensorFlow2 Author: calmisential File: group_convolution.py License: MIT License | 6 votes |
def get_config(self): config = { "input_channels": self.input_channels, "output_channels": self.output_channels, "kernel_size": self.kernel_size, "strides": self.strides, "padding": self.padding, "data_format": self.data_format, "dilation_rate": self.dilation_rate, "activation": activations.serialize(self.activation), "groups": self.groups, "use_bias": self.use_bias, "kernel_initializer": initializers.serialize(self.kernel_initializer), "bias_initializer": initializers.serialize(self.bias_initializer), "kernel_regularizer": regularizers.serialize(self.kernel_regularizer), "bias_regularizer": regularizers.serialize(self.bias_regularizer), "activity_regularizer": regularizers.serialize(self.activity_regularizer), "kernel_constraint": constraints.serialize(self.kernel_constraint), "bias_constraint": constraints.serialize(self.bias_constraint) } base_config = super(GroupConv2D, self).get_config() return {**base_config, **config}
Example #7
Source Project: Basic_CNNs_TensorFlow2 Author: calmisential File: group_convolution.py License: MIT License | 6 votes |
def get_config(self): config = { "input_channels": self.input_channels, "output_channels": self.output_channels, "kernel_size": self.kernel_size, "strides": self.strides, "padding": self.padding, "output_padding": self.output_padding, "data_format": self.data_format, "dilation_rate": self.dilation_rate, "activation": activations.serialize(self.activation), "groups": self.groups, "use_bias": self.use_bias, "kernel_initializer": initializers.serialize(self.kernel_initializer), "bias_initializer": initializers.serialize(self.bias_initializer), "kernel_regularizer": regularizers.serialize(self.kernel_regularizer), "bias_regularizer": regularizers.serialize(self.bias_regularizer), "activity_regularizer": regularizers.serialize(self.activity_regularizer), "kernel_constraint": constraints.serialize(self.kernel_constraint), "bias_constraint": constraints.serialize(self.bias_constraint) } base_config = super(GroupConv2DTranspose, self).get_config() return {**base_config, **config}
Example #8
Source Project: TF.Keras-Commonly-used-models Author: 1044197988 File: FRN.py License: Apache License 2.0 | 6 votes |
def get_config(self): config = { 'axis': self.axis, 'epsilon': self.epsilon, 'beta_initializer': initializers.serialize(self.beta_initializer), 'tau_initializer': initializers.serialize(self.tau_initializer), 'gamma_initializer': initializers.serialize(self.gamma_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'tau_regularizer': regularizers.serialize(self.tau_regularizer), 'gamma_regularizer': regularizers.serialize(self.gamma_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_constraint': constraints.serialize(self.gamma_constraint), 'tau_constraint': constraints.serialize(self.tau_constraint) } base_config = super(FRN, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #9
Source Project: spektral Author: danielegrattarola File: keras.py License: MIT License | 5 votes |
def serialize_kwarg(key, attr): if key.endswith('_initializer'): return initializers.serialize(attr) if key.endswith('_regularizer'): return regularizers.serialize(attr) if key.endswith('_constraint'): return constraints.serialize(attr) if key == 'activation': return activations.serialize(attr) if key == 'use_bias': return attr
Example #10
Source Project: spektral Author: danielegrattarola File: topk_pool.py License: MIT License | 5 votes |
def get_config(self): config = { 'ratio': self.ratio, 'return_mask': self.return_mask, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))
Example #11
Source Project: spektral Author: danielegrattarola File: diff_pool.py License: MIT License | 5 votes |
def get_config(self): config = { 'k': self.k, 'channels': self.channels, 'return_mask': self.return_mask, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))
Example #12
Source Project: spektral Author: danielegrattarola File: mincut_pool.py License: MIT License | 5 votes |
def get_config(self): config = { 'k': self.k, 'mlp_hidden': self.mlp_hidden, 'mlp_activation': self.mlp_activation, 'return_mask': self.return_mask, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))
Example #13
Source Project: spektral Author: danielegrattarola File: graph_conv.py License: MIT License | 5 votes |
def get_config(self): config = { 'channels': self.channels, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))
Example #14
Source Project: keras-squeeze-excite-network Author: titu1994 File: se_mobilenets.py License: MIT License | 5 votes |
def get_config(self): config = super(DepthwiseConv2D, self).get_config() config.pop('filters') config.pop('kernel_initializer') config.pop('kernel_regularizer') config.pop('kernel_constraint') config['depth_multiplier'] = self.depth_multiplier config['depthwise_initializer'] = initializers.serialize(self.depthwise_initializer) config['depthwise_regularizer'] = regularizers.serialize(self.depthwise_regularizer) config['depthwise_constraint'] = constraints.serialize(self.depthwise_constraint) return config
Example #15
Source Project: qkeras Author: google File: qlayers.py License: Apache License 2.0 | 5 votes |
def get_config(self): config = { "units": self.units, "activation": activations.serialize(self.activation), "use_bias": self.use_bias, "kernel_quantizer": constraints.serialize(self.kernel_quantizer_internal), "bias_quantizer": constraints.serialize(self.bias_quantizer_internal), "kernel_initializer": initializers.serialize(self.kernel_initializer), "bias_initializer": initializers.serialize(self.bias_initializer), "kernel_regularizer": regularizers.serialize(self.kernel_regularizer), "bias_regularizer": regularizers.serialize(self.bias_regularizer), "activity_regularizer": regularizers.serialize(self.activity_regularizer), "kernel_constraint": constraints.serialize(self.kernel_constraint), "bias_constraint": constraints.serialize(self.bias_constraint), "kernel_range": self.kernel_range, "bias_range": self.bias_range } base_config = super(QDense, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #16
Source Project: qkeras Author: google File: qconvolutional.py License: Apache License 2.0 | 5 votes |
def get_config(self): config = { "kernel_quantizer": constraints.serialize(self.kernel_quantizer_internal), "bias_quantizer": constraints.serialize(self.bias_quantizer_internal), "kernel_range": self.kernel_range, "bias_range": self.bias_range } base_config = super(QConv1D, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #17
Source Project: qkeras Author: google File: qconvolutional.py License: Apache License 2.0 | 5 votes |
def get_config(self): config = { "kernel_quantizer": constraints.serialize(self.kernel_quantizer_internal), "bias_quantizer": constraints.serialize(self.bias_quantizer_internal), "kernel_range": self.kernel_range, "bias_range": self.bias_range } base_config = super(QConv2D, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #18
Source Project: qkeras Author: google File: qnormalization.py License: Apache License 2.0 | 5 votes |
def get_config(self): config = { 'axis': self.axis, 'momentum': self.momentum, 'epsilon': self.epsilon, 'center': self.center, 'scale': self.scale, 'beta_quantizer': constraints.serialize(self.beta_quantizer_internal), 'gamma_quantizer': constraints.serialize(self.gamma_quantizer_internal), 'mean_quantizer': constraints.serialize(self.mean_quantizer_internal), 'variance_quantizer': constraints.serialize(self.variance_quantizer_internal), 'beta_initializer': initializers.serialize(self.beta_initializer), 'gamma_initializer': initializers.serialize(self.gamma_initializer), 'moving_mean_initializer': initializers.serialize(self.moving_mean_initializer), 'moving_variance_initializer': initializers.serialize(self.moving_variance_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'gamma_regularizer': regularizers.serialize(self.gamma_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_constraint': constraints.serialize(self.gamma_constraint), 'beta_range': self.beta_range, 'gamma_range': self.gamma_range, } base_config = super(BatchNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #19
Source Project: megnet Author: materialsvirtuallab File: set2set.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def get_config(self): config = {"T": self.T, "n_hidden": self.n_hidden, "activation": activations.serialize(self.activation), "activation_lstm": activations.serialize( self.activation_lstm), "recurrent_activation": activations.serialize( self.recurrent_activation), "kernel_initializer": initializers.serialize( self.kernel_initializer), "recurrent_initializer": initializers.serialize( self.recurrent_initializer), "bias_initializer": initializers.serialize( self.bias_initializer), "use_bias": self.use_bias, "unit_forget_bias": self.unit_forget_bias, "kernel_regularizer": regularizers.serialize( self.kernel_regularizer), "recurrent_regularizer": regularizers.serialize( self.recurrent_regularizer), "bias_regularizer": regularizers.serialize( self.bias_regularizer), "kernel_constraint": constraints.serialize( self.kernel_constraint), "recurrent_constraint": constraints.serialize( self.recurrent_constraint), "bias_constraint": constraints.serialize(self.bias_constraint) } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))
Example #20
Source Project: megnet Author: materialsvirtuallab File: base.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def get_config(self) -> Dict: """ Part of keras layer interface, where the signature is converted into a dict Returns: configurational dictionary """ config = { 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize( self.kernel_initializer), 'bias_initializer': initializers.serialize( self.bias_initializer), 'kernel_regularizer': regularizers.serialize( self.kernel_regularizer), 'bias_regularizer': regularizers.serialize( self.bias_regularizer), 'activity_regularizer': regularizers.serialize( self.activity_regularizer), 'kernel_constraint': constraints.serialize( self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) # noqa
Example #21
Source Project: Echo Author: digantamisra98 File: custom_activation.py License: MIT License | 5 votes |
def get_config(self): config = { "alpha_initializer": initializers.serialize(self.b_initializer), "alpha_regularizer": regularizers.serialize(self.b_regularizer), "alpha_constraint": constraints.serialize(self.b_constraint), "b_initializer": initializers.serialize(self.b_initializer), "b_regularizer": regularizers.serialize(self.b_regularizer), "b_constraint": constraints.serialize(self.b_constraint), "shared_axes": self.shared_axes, } base_config = super(APL, self).get_config() return dict(list(base_config.items()) + list(config.items()))