Python tensorflow.python.keras.models.Model() Examples

The following are 30 code examples of tensorflow.python.keras.models.Model(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.python.keras.models , or try the search function .
Example #1
Source Project: GraphEmbedding   Author: shenweichen   File: sdne.py    License: MIT License 6 votes vote down vote up
def create_model(node_size, hidden_size=[256, 128], l1=1e-5, l2=1e-4):
    A = Input(shape=(node_size,))
    L = Input(shape=(None,))
    fc = A
    for i in range(len(hidden_size)):
        if i == len(hidden_size) - 1:
            fc = Dense(hidden_size[i], activation='relu',
                       kernel_regularizer=l1_l2(l1, l2), name='1st')(fc)
        else:
            fc = Dense(hidden_size[i], activation='relu',
                       kernel_regularizer=l1_l2(l1, l2))(fc)
    Y = fc
    for i in reversed(range(len(hidden_size) - 1)):
        fc = Dense(hidden_size[i], activation='relu',
                   kernel_regularizer=l1_l2(l1, l2))(fc)

    A_ = Dense(node_size, 'relu', name='2nd')(fc)
    model = Model(inputs=[A, L], outputs=[A_, Y])
    emb = Model(inputs=A, outputs=Y)
    return model, emb 
Example #2
Source Project: MAX-Named-Entity-Tagger   Author: IBM   File: train_ner.py    License: Apache License 2.0 6 votes vote down vote up
def _build_model(embedding_weights, char_bidirectional=False, concat_bidirectional=True):
    word_emb_input, word_emb_output, char_emb_input, char_emb_output = _build_embeddings(embedding_weights, char_bidirectional)
    # concatenate word embedding and character embedding
    x = concatenate([word_emb_output, char_emb_output])
    x = Dropout(dropout)(x)
    # construct LSTM layers. Option to use 1 Bidirectonal layer, or one forward and one backward LSTM layer.
    # Empirical results appear better with bidirectional LSTM here, hence it is the default.
    if concat_bidirectional:
        x = Bidirectional(LSTM(hidden_size_lstm, return_sequences=True))(x)
    else:
        fw_LSTM_2 = LSTM(hidden_size_lstm, return_sequences=True)(x)
        bw_LSTM_2 = LSTM(hidden_size_lstm, return_sequences=True, go_backwards=True)(fw_LSTM_2)
        x = concatenate([fw_LSTM_2, bw_LSTM_2])

    x = Dropout(dropout)(x)
    scores = Dense(n_labels)(x)
    # Activation Function
    x = Activation("softmax", name='predict_output')(scores)
    # create model
    model = Model([word_emb_input, char_emb_input], x)
    return model


# === Build model === 
Example #3
Source Project: camera-trap-classifier   Author: marco-willi   File: prepare_model.py    License: MIT License 6 votes vote down vote up
def load_model_and_replace_output(model_old, model_new, new_output_layer):
    """ Load a model and replace the last layer """

    new_input = model_old.input

    # get old model output before last layer
    old_output = model_old.layers[-2].output

    # create a new output layer
    new_output = (new_output_layer)(old_output)

    # combine old model with new output layer
    new_model = Model(inputs=new_input,
                      outputs=new_output)

    logging.info("Replacing output layer of model")

    # print layers of old model
    for layer, i in zip(new_model.layers, range(0, len(new_model.layers))):
        logging.info("Old model - layer %s: %s" % (i, layer.name))

    return new_model 
Example #4
Source Project: GraphNeuralNetwork   Author: shenweichen   File: gcn.py    License: MIT License 6 votes vote down vote up
def GCN(adj_dim,feature_dim,n_hidden, num_class, num_layers=2,activation=tf.nn.relu,dropout_rate=0.5, l2_reg=0, feature_less=True, ):
    Adj = Input(shape=(None,), sparse=True)
    if feature_less:
        X_in = Input(shape=(1,), )

        emb = Embedding(adj_dim, feature_dim,
                        embeddings_initializer=Identity(1.0), trainable=False)
        X_emb = emb(X_in)
        h = Reshape([X_emb.shape[-1]])(X_emb)
    else:
        X_in = Input(shape=(feature_dim,), )

        h = X_in

    for i in range(num_layers):
        if i == num_layers - 1:
            activation = tf.nn.softmax
            n_hidden = num_class
        h = GraphConvolution(n_hidden, activation=activation, dropout_rate=dropout_rate, l2_reg=l2_reg)([h,Adj])

    output = h
    model = Model(inputs=[X_in,Adj], outputs=output)

    return model 
Example #5
Source Project: progressive-neural-architecture-search   Author: titu1994   File: model.py    License: MIT License 6 votes vote down vote up
def __init__(self, actions):
        '''
        Utility Model class to construct child models provided with an action list.
        
        # Args:
            actions: list of [input; action] pairs that define the cell. 
        '''
        super(ModelGenerator, self).__init__()

        self.B = len(actions) // 4
        self.action_list = np.split(np.array(actions), len(actions) // 2)

        self.global_counter = 0

        self.cell_1 = self.build_cell(self.B, self.action_list, filters=32, stride=(2, 2))
        self.cell_2 = self.build_cell(self.B, self.action_list, filters=64, stride=(2, 2))

        self.gap = GlobalAveragePooling2D()
        self.logits = Dense(10, activation='softmax') # only logits 
Example #6
Source Project: GraphEmbedding   Author: shenweichen   File: line.py    License: MIT License 5 votes vote down vote up
def create_model(numNodes, embedding_size, order='second'):

    v_i = Input(shape=(1,))
    v_j = Input(shape=(1,))

    first_emb = Embedding(numNodes, embedding_size, name='first_emb')
    second_emb = Embedding(numNodes, embedding_size, name='second_emb')
    context_emb = Embedding(numNodes, embedding_size, name='context_emb')

    v_i_emb = first_emb(v_i)
    v_j_emb = first_emb(v_j)

    v_i_emb_second = second_emb(v_i)
    v_j_context_emb = context_emb(v_j)

    first = Lambda(lambda x: tf.reduce_sum(
        x[0]*x[1], axis=-1, keep_dims=False), name='first_order')([v_i_emb, v_j_emb])
    second = Lambda(lambda x: tf.reduce_sum(
        x[0]*x[1], axis=-1, keep_dims=False), name='second_order')([v_i_emb_second, v_j_context_emb])

    if order == 'first':
        output_list = [first]
    elif order == 'second':
        output_list = [second]
    else:
        output_list = [first, second]

    model = Model(inputs=[v_i, v_j], outputs=output_list)

    return model, {'first': first_emb, 'second': second_emb} 
Example #7
Source Project: ImageAI   Author: OlafenwaMoses   File: __init__.py    License: MIT License 5 votes vote down vote up
def save_model_to_tensorflow(self, new_model_folder, new_model_name=""):

        """
        'save_model_to_tensorflow' function allows you to save your loaded Keras (.h5) model and save it to the Tensorflow (.pb) model format.
        - new_model_folder (required), the path to the folder you want the converted Tensorflow model to be saved
        - new_model_name (required), the desired filename for your converted Tensorflow model e.g 'my_new_model.pb'

        :param new_model_folder:
        :param new_model_name:
        :return:
        """

        if(self.__modelLoaded == True):
            out_prefix = "output_"
            output_dir = new_model_folder
            if os.path.exists(output_dir) == False:
                os.mkdir(output_dir)
            model_name = os.path.join(output_dir, new_model_name)

            keras_model = self.__model_collection[0]


            out_nodes = []

            for i in range(len(keras_model.outputs)):
                out_nodes.append(out_prefix + str(i + 1))
                tf.identity(keras_model.output[i], out_prefix + str(i + 1))

            sess = K.get_session()

            from tensorflow.python.framework import graph_util, graph_io

            init_graph = sess.graph.as_graph_def()

            main_graph = graph_util.convert_variables_to_constants(sess, init_graph, out_nodes)

            graph_io.write_graph(main_graph, output_dir, name=model_name, as_text=False)
            print("Tensorflow Model Saved") 
Example #8
Source Project: BCNN-keras-clean   Author: ryanfwy   File: model_builder.py    License: MIT License 5 votes vote down vote up
def save_model(
        size_height=448,
        size_width=448,
        no_class=200
    ):
    '''Save Bilinear CNN to current directory.

    The model will be saved as `model.json`.

    Args:
        size_height: default 448.
        size_width: default 448.
        no_class: number of prediction classes.

    Returns:
        Bilinear CNN model.
    '''
    model = buil_bcnn(
        size_height=size_height,
        size_width=size_width,
        no_class=no_class)

    # Save model json
    model_json = model.to_json()
    with open('./model.json', 'w') as f:
        f.write(model_json)

    print('Model is saved to ./model.json')

    return True 
Example #9
Source Project: FATE   Author: FederatedAI   File: backend.py    License: Apache License 2.0 5 votes vote down vote up
def export_model(self):
        with tempfile.TemporaryDirectory() as tmp_path:
            # try:
            #     # LOGGER.info("Model saved with model.save method.")
            #     tf.keras.models.save_model(self._model, filepath=tmp_path, save_format="tf")
            # except NotImplementedError:
            #     import warnings
            #     warnings.warn('Saving the model as SavedModel is still in experimental stages. '
            #                   'trying tf.keras.experimental.export_saved_model...')
            tf.keras.experimental.export_saved_model(self._model, saved_model_path=tmp_path)

            model_bytes = zip_dir_as_bytes(tmp_path)

        return model_bytes 
Example #10
Source Project: FATE   Author: FederatedAI   File: backend.py    License: Apache License 2.0 5 votes vote down vote up
def export_model(self):
        with tempfile.TemporaryDirectory() as tmp_path:
            # Comment this block because tf 1.15 is not supporting Keras Customized Layer
            # try:
            #     # LOGGER.info("Model saved with model.save method.")
            #     tf.keras.models.save_model(self._model, filepath=tmp_path, save_format="tf")
            # except NotImplementedError:
            #     import warnings
            #     warnings.warn('Saving the model as SavedModel is still in experimental stages. '
            #                   'trying tf.keras.experimental.export_saved_model...')
            tf.keras.experimental.export_saved_model(self._model, saved_model_path=tmp_path)

            model_bytes = zip_dir_as_bytes(tmp_path)

        return model_bytes 
Example #11
Source Project: BVAE-tf   Author: alecGraves   File: ae.py    License: The Unlicense 5 votes vote down vote up
def __init__(self, encoderArchitecture, 
                 decoderArchitecture):

        self.encoder = encoderArchitecture.model
        self.decoder = decoderArchitecture.model

        self.ae = Model(self.encoder.inputs, self.decoder(self.encoder.outputs)) 
Example #12
Source Project: cxplain   Author: d909b   File: test_explanation_model.py    License: MIT License 5 votes vote down vote up
def test_mnist_unet_with_shape_valid(self):
        num_subsamples = 100
        (x_train, y_train), (x_test, y_test) = TestUtil.get_mnist(flattened=False, num_subsamples=num_subsamples)

        explained_model_builder = MLPModelBuilder(num_layers=2, num_units=64, activation="relu", p_dropout=0.2,
                                                  verbose=0, batch_size=256, learning_rate=0.001, num_epochs=2,
                                                  early_stopping_patience=128)
        input_shape = x_train.shape[1:]
        input_layer = Input(shape=input_shape)
        last_layer = Flatten()(input_layer)
        last_layer = explained_model_builder.build(last_layer)
        last_layer = Dense(y_train.shape[-1], activation="softmax")(last_layer)
        explained_model = Model(input_layer, last_layer)
        explained_model.compile(loss="categorical_crossentropy",
                                optimizer="adam")
        explained_model.fit(x_train, y_train)
        masking_operation = ZeroMasking()
        loss = categorical_crossentropy

        downsample_factors = [(2, 2), (4, 4), (4, 7), (7, 4), (7, 7)]
        with_bns = [True if i % 2 == 0 else False for i in range(len(downsample_factors))]
        for downsample_factor, with_bn in zip(downsample_factors, with_bns):
            model_builder = UNetModelBuilder(downsample_factor, num_layers=2, num_units=64, activation="relu",
                                             p_dropout=0.2, verbose=0, batch_size=256, learning_rate=0.001,
                                             num_epochs=2, early_stopping_patience=128, with_bn=with_bn)

            explainer = CXPlain(explained_model, model_builder, masking_operation, loss,
                                downsample_factors=downsample_factor)

            explainer.fit(x_train, y_train)
            eval_score = explainer.score(x_test, y_test)
            train_score = explainer.get_last_fit_score()
            median = explainer.predict(x_test)
            self.assertTrue(median.shape == x_test.shape) 
Example #13
def trivial_model(num_classes):
  """Trivial model for ImageNet dataset."""

  input_shape = (224, 224, 3)
  img_input = layers.Input(shape=input_shape)

  x = layers.Lambda(lambda x: backend.reshape(x, [-1, 224 * 224 * 3]),
                    name='reshape')(img_input)
  x = layers.Dense(1, name='fc1')(x)
  x = layers.Dense(num_classes, name='fc1000')(x)
  x = layers.Activation('softmax', dtype='float32')(x)

  return models.Model(img_input, x, name='trivial') 
Example #14
Source Project: camera-trap-classifier   Author: marco-willi   File: utils.py    License: MIT License 5 votes vote down vote up
def is_multi_gpu_model(model):
    """ Check if a specific model is a multi_gpu model by checking if one of
        the layers is a keras model itself
    """
    for layer in model.layers:
        if isinstance(layer, Model):
            return True
    return False 
Example #15
Source Project: camera-trap-classifier   Author: marco-willi   File: utils.py    License: MIT License 5 votes vote down vote up
def get_gpu_base_model(model):
    """ get multi_gpu base model
    """
    for layer in model.layers:
        if isinstance(layer, Model):
            return layer
    return None 
Example #16
Source Project: GraphNeuralNetwork   Author: shenweichen   File: graphsage.py    License: MIT License 5 votes vote down vote up
def GraphSAGE(feature_dim, neighbor_num, n_hidden, n_classes, use_bias=True, activation=tf.nn.relu,
              aggregator_type='mean', dropout_rate=0.0, l2_reg=0):
    features = Input(shape=(feature_dim,))
    node_input = Input(shape=(1,), dtype=tf.int32)
    neighbor_input = [Input(shape=(l,), dtype=tf.int32) for l in neighbor_num]

    if aggregator_type == 'mean':
        aggregator = MeanAggregator
    else:
        aggregator = PoolingAggregator

    h = features
    for i in range(0, len(neighbor_num)):
        if i > 0:
            feature_dim = n_hidden
        if i == len(neighbor_num) - 1:
            activation = tf.nn.softmax
            n_hidden = n_classes
        h = aggregator(units=n_hidden, input_dim=feature_dim, activation=activation, l2_reg=l2_reg, use_bias=use_bias,
                       dropout_rate=dropout_rate, neigh_max=neighbor_num[i], aggregator=aggregator_type)(
            [h, node_input, neighbor_input[i]])  #

    output = h
    input_list = [features, node_input] + neighbor_input
    model = Model(input_list, outputs=output)
    return model 
Example #17
Source Project: GraphNeuralNetwork   Author: shenweichen   File: gat.py    License: MIT License 5 votes vote down vote up
def GAT(adj_dim,feature_dim,num_class,num_layers=2,n_attn_heads = 8,att_embedding_size=8,dropout_rate=0.0,l2_reg=0.0,use_bias=True):
    X_in = Input(shape=(feature_dim,))
    A_in = Input(shape=(adj_dim,))
    h = X_in
    for _ in range(num_layers-1):
        h = GATLayer(att_embedding_size=att_embedding_size, head_num=n_attn_heads, dropout_rate=dropout_rate, l2_reg=l2_reg,
                                     activation=tf.nn.elu, use_bias=use_bias, )([h, A_in])

    h = GATLayer(att_embedding_size=num_class, head_num=1, dropout_rate=dropout_rate, l2_reg=l2_reg,
                                 activation=tf.nn.softmax, use_bias=use_bias, reduction='mean')([h, A_in])

    model = Model(inputs=[X_in, A_in], outputs=h)

    return model 
Example #18
Source Project: DeepCTR   Author: shenweichen   File: wdl.py    License: Apache License 2.0 5 votes vote down vote up
def WDL(linear_feature_columns, dnn_feature_columns, dnn_hidden_units=(128, 128), l2_reg_linear=1e-5,
        l2_reg_embedding=1e-5, l2_reg_dnn=0, seed=1024, dnn_dropout=0, dnn_activation='relu',
        task='binary'):
    """Instantiates the Wide&Deep Learning architecture.

    :param linear_feature_columns: An iterable containing all the features used by linear part of the model.
    :param dnn_feature_columns: An iterable containing all the features used by deep part of the model.
    :param dnn_hidden_units: list,list of positive integer or empty list, the layer number and units in each layer of DNN
    :param l2_reg_linear: float. L2 regularizer strength applied to wide part
    :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector
    :param l2_reg_dnn: float. L2 regularizer strength applied to DNN
    :param seed: integer ,to use as random seed.
    :param dnn_dropout: float in [0,1), the probability we will drop out a given DNN coordinate.
    :param dnn_activation: Activation function to use in DNN
    :param task: str, ``"binary"`` for  binary logloss or  ``"regression"`` for regression loss
    :return: A Keras model instance.
    """

    features = build_input_features(
        linear_feature_columns + dnn_feature_columns)

    inputs_list = list(features.values())

    linear_logit = get_linear_logit(features, linear_feature_columns, seed=seed, prefix='linear',
                                    l2_reg=l2_reg_linear)

    sparse_embedding_list, dense_value_list = input_from_feature_columns(features, dnn_feature_columns,
                                                                         l2_reg_embedding, seed)

    dnn_input = combined_dnn_input(sparse_embedding_list, dense_value_list)
    dnn_out = DNN(dnn_hidden_units, dnn_activation, l2_reg_dnn, dnn_dropout,
                  False, seed)(dnn_input)
    dnn_logit = Dense(
        1, use_bias=False, activation=None)(dnn_out)

    final_logit = add_func([dnn_logit, linear_logit])

    output = PredictionLayer(task)(final_logit)

    model = Model(inputs=inputs_list, outputs=output)
    return model 
Example #19
Source Project: DeepCTR   Author: shenweichen   File: mlr.py    License: Apache License 2.0 5 votes vote down vote up
def MLR(region_feature_columns, base_feature_columns=None, region_num=4,
        l2_reg_linear=1e-5, seed=1024, task='binary',
        bias_feature_columns=None):
    """Instantiates the Mixed Logistic Regression/Piece-wise Linear Model.

    :param region_feature_columns: An iterable containing all the features used by region part of the model.
    :param base_feature_columns: An iterable containing all the features used by base part of the model.
    :param region_num: integer > 1,indicate the piece number
    :param l2_reg_linear: float. L2 regularizer strength applied to weight
    :param seed: integer ,to use as random seed.
    :param task: str, ``"binary"`` for  binary logloss or  ``"regression"`` for regression loss
    :param bias_feature_columns: An iterable containing all the features used by bias part of the model.
    :return: A Keras model instance.
    """

    if region_num <= 1:
        raise ValueError("region_num must > 1")

    if base_feature_columns is None or len(base_feature_columns) == 0:
        base_feature_columns = region_feature_columns

    if bias_feature_columns is None:
        bias_feature_columns = []

    features = build_input_features(region_feature_columns + base_feature_columns + bias_feature_columns)

    inputs_list = list(features.values())

    region_score = get_region_score(features, region_feature_columns, region_num, l2_reg_linear, seed)
    learner_score = get_learner_score(features, base_feature_columns, region_num, l2_reg_linear, seed, task=task)

    final_logit = dot([region_score, learner_score], axes=-1)

    if bias_feature_columns is not None and len(bias_feature_columns) > 0:
        bias_score = get_learner_score(features, bias_feature_columns, 1, l2_reg_linear, seed, prefix='bias_',
                                       task='binary')

        final_logit = dot([final_logit, bias_score], axes=-1)

    model = Model(inputs=inputs_list, outputs=final_logit)
    return model 
Example #20
Source Project: models   Author: tensorflow   File: test_utils.py    License: Apache License 2.0 5 votes vote down vote up
def trivial_model(num_classes):
  """Trivial model for ImageNet dataset."""

  input_shape = (224, 224, 3)
  img_input = layers.Input(shape=input_shape)

  x = layers.Lambda(lambda x: backend.reshape(x, [-1, 224 * 224 * 3]),
                    name='reshape')(img_input)
  x = layers.Dense(1, name='fc1')(x)
  x = layers.Dense(num_classes, name='fc1000')(x)
  x = layers.Activation('softmax', dtype='float32')(x)

  return models.Model(img_input, x, name='trivial') 
Example #21
Source Project: tsne-grid   Author: prabodhhere   File: tsne_grid.py    License: MIT License 5 votes vote down vote up
def build_model():
    base_model = VGG16(weights='imagenet')
    top_model = Sequential()
    top_model.add(Flatten(input_shape=base_model.output_shape[1:]))
    return Model(inputs=base_model.input, outputs=top_model(base_model.output)) 
Example #22
Source Project: ImageAI   Author: OlafenwaMoses   File: __init__.py    License: MIT License 4 votes vote down vote up
def save_model_for_deepstack(self, new_model_folder, new_model_name=""):

        """
        'save_model_for_deepstack' function allows you to save your loaded Keras (.h5) model and save it to the deployment format of DeepStack custom API. This function will save the model and the JSON file you need for the deployment.
        - new_model_folder (required), the path to the folder you want the model to be saved
        - new_model_name (required), the desired filename for your model e.g 'my_new_model.h5'

        :param new_model_folder:
        :param new_model_name:
        :return:

        """

        if(self.__modelLoaded == True):
            print(self.jsonPath)
            with open(self.jsonPath) as inputFile:
                model_json = json.load(inputFile)

                deepstack_json = {"sys-version": "1.0", "framework":"KERAS","mean":0.5,"std":255}
                deepstack_json["width"] = self.__input_image_size
                deepstack_json["height"] = self.__input_image_size

                deepstack_classes_map = {}


                for eachClass in model_json:
                    deepstack_classes_map[eachClass] = model_json[eachClass]

                deepstack_json["map"] = deepstack_classes_map

                output_dir = new_model_folder
                if os.path.exists(output_dir) == False:
                    os.mkdir(output_dir)

                with open(os.path.join(output_dir,"config.json"), "w+") as json_file:
                    json.dump(deepstack_json, json_file, indent=4, separators=(",", " : "),
                              ensure_ascii=True)
                    json_file.close()
                print("JSON Config file saved for DeepStack format in ",
                      os.path.join(output_dir, "config.json"))

                keras_model = self.__model_collection[0]
                save_model(keras_model, os.path.join(new_model_folder, new_model_name))
                print("Model saved for DeepStack format in",
                      os.path.join(os.path.join(new_model_folder, new_model_name))) 
Example #23
Source Project: FATE   Author: FederatedAI   File: backend.py    License: Apache License 2.0 4 votes vote down vote up
def build(self, lambda_u=0.0001, lambda_v=0.0001, optimizer='rmsprop',
              loss='mse', metrics='mse', initializer='uniform'):
        """
        Init session and create model architecture.
        :param lambda_u: lambda value of l2 norm for user embeddings.
        :param lambda_v: lambda value of l2 norm for item embeddings.
        :param optimizer: optimizer type.
        :param loss: loss type.
        :param metrics: evaluation metrics.
        :param initializer: initializer of embedding
        :return:
        """
        # init session on first time ref
        sess = self.session
        # user embedding
        user_input_layer = Input(shape=(1,), dtype='int32', name='user_input')
        user_embedding_layer = Embedding(
            input_dim=self.user_num,
            output_dim=self.embedding_dim,
            input_length=1,
            name='user_embedding',
            embeddings_regularizer=l2(lambda_u),
            embeddings_initializer=initializer)(user_input_layer)
        user_embedding_layer = Flatten(name='user_flatten')(user_embedding_layer)

        # item embedding
        item_input_layer = Input(shape=(1,), dtype='int32', name='item_input')
        item_embedding_layer = Embedding(
            input_dim=self.item_num,
            output_dim=self.embedding_dim,
            input_length=1,
            name='item_embedding',
            embeddings_regularizer=l2(lambda_v),
            embeddings_initializer=initializer)(item_input_layer)
        item_embedding_layer = Flatten(name='item_flatten')(item_embedding_layer)

        # rating prediction
        dot_layer = Dot(axes=-1,
                        name='dot_layer')([user_embedding_layer,
                                           item_embedding_layer])
        self._model = Model(
            inputs=[user_input_layer, item_input_layer], outputs=[dot_layer])

        # compile model
        optimizer_instance = getattr(
            tf.keras.optimizers, optimizer.optimizer)(**optimizer.kwargs)
        losses = getattr(tf.keras.losses, loss)
        self._model.compile(optimizer=optimizer_instance,
                            loss=losses, metrics=metrics)
        # pick user_embedding for aggregating
        self._trainable_weights = {v.name.split(
            "/")[0]: v for v in self._model.trainable_weights}
        self._aggregate_weights = {
            "user_embedding": self._trainable_weights["user_embedding"]} 
Example #24
Source Project: FATE   Author: FederatedAI   File: backend.py    License: Apache License 2.0 4 votes vote down vote up
def _build(self, lamda_u=0.0001, lamda_v=0.0001, optimizer='rmsprop',
               loss='mse', metrics='mse', initializer='uniform'):
        # init session on first time ref
        sess = self.session

        # user embedding
        user_InputLayer = Input(shape=(1,), dtype='int32', name='user_input')
        user_EmbeddingLayer = Embedding(input_dim=self.user_num,
                                        output_dim=self.embedding_dim,
                                        input_length=1,
                                        name='user_embedding',
                                        embeddings_regularizer=l2(lamda_u),
                                        embeddings_initializer=initializer)(user_InputLayer)
        user_EmbeddingLayer = Flatten(name='user_flatten')(user_EmbeddingLayer)

        # user bias
        user_BiasLayer = Embedding(input_dim=self.user_num, output_dim=1, input_length=1,
                                   name='user_bias', embeddings_regularizer=l2(lamda_u),
                                   embeddings_initializer=Zeros())(user_InputLayer)
        user_BiasLayer = Flatten(name='user_bias_flatten')(user_BiasLayer)

        # item embedding
        item_InputLayer = Input(shape=(1,), dtype='int32', name='item_input')
        item_EmbeddingLayer = Embedding(input_dim=self.item_num,
                                        output_dim=self.embedding_dim,
                                        input_length=1,
                                        name='item_embedding',
                                        embeddings_regularizer=l2(lamda_v),
                                        embeddings_initializer=initializer)(item_InputLayer)
        item_EmbeddingLayer = Flatten(name='item_flatten')(item_EmbeddingLayer)

        # item bias
        item_BiasLayer = Embedding(input_dim=self.item_num, output_dim=1, input_length=1,
                                   name='item_bias', embeddings_regularizer=l2(lamda_v),
                                   embeddings_initializer=Zeros())(item_InputLayer)
        item_BiasLayer = Flatten(name='item_bias_flatten')(item_BiasLayer)

        # rating prediction
        dotLayer = Dot(axes=-1, name='dot_layer')([user_EmbeddingLayer, item_EmbeddingLayer])

        # add mu, user bias and item bias
        dotLayer = ConstantLayer(mu=self.mu)(dotLayer)
        dotLayer = Add()([dotLayer, user_BiasLayer])
        dotLayer = Add()([dotLayer, item_BiasLayer])

        # create model
        self._model = Model(inputs=[user_InputLayer, item_InputLayer], outputs=[dotLayer])

        # compile model
        optimizer_instance = getattr(tf.keras.optimizers, optimizer.optimizer)(**optimizer.kwargs)
        losses = getattr(tf.keras.losses, loss)
        self._model.compile(optimizer=optimizer_instance,
                            loss=losses, metrics=metrics)
        # pick user_embedding and user_bias for aggregating
        self._trainable_weights = {v.name.split("/")[0]: v for v in self._model.trainable_weights}
        LOGGER.debug(f"trainable weights {self._trainable_weights}")
        self._aggregate_weights = {"user_embedding": self._trainable_weights["user_embedding"],
                                   "user_bias": self._trainable_weights["user_bias"]} 
Example #25
Source Project: BVAE-tf   Author: alecGraves   File: models.py    License: The Unlicense 4 votes vote down vote up
def Build(self):
        # create the input layer for feeding the netowrk
        inLayer = Input(self.inputShape, self.batchSize)
        net = ConvBnLRelu(32, kernelSize=3)(inLayer, training=self.training) # 1
        net = MaxPool2D((2, 2), strides=(2, 2))(net)

        net = ConvBnLRelu(64, kernelSize=3)(net, training=self.training) # 2
        net = MaxPool2D((2, 2), strides=(2, 2))(net)

        net = ConvBnLRelu(128, kernelSize=3)(net, training=self.training) # 3
        net = ConvBnLRelu(64, kernelSize=1)(net, training=self.training) # 4
        net = ConvBnLRelu(128, kernelSize=3)(net, training=self.training) # 5
        net = MaxPool2D((2, 2), strides=(2, 2))(net)

        net = ConvBnLRelu(256, kernelSize=3)(net, training=self.training) # 6
        net = ConvBnLRelu(128, kernelSize=1)(net, training=self.training) # 7
        net = ConvBnLRelu(256, kernelSize=3)(net, training=self.training) # 8
        net = MaxPool2D((2, 2), strides=(2, 2))(net)

        net = ConvBnLRelu(512, kernelSize=3)(net, training=self.training) # 9
        net = ConvBnLRelu(256, kernelSize=1)(net, training=self.training) # 10
        net = ConvBnLRelu(512, kernelSize=3)(net, training=self.training) # 11
        net = ConvBnLRelu(256, kernelSize=1)(net, training=self.training) # 12
        net = ConvBnLRelu(512, kernelSize=3)(net, training=self.training) # 13
        net = MaxPool2D((2, 2), strides=(2, 2))(net)

        net = ConvBnLRelu(1024, kernelSize=3)(net, training=self.training) # 14
        net = ConvBnLRelu(512, kernelSize=1)(net, training=self.training) # 15
        net = ConvBnLRelu(1024, kernelSize=3)(net, training=self.training) # 16
        net = ConvBnLRelu(512, kernelSize=1)(net, training=self.training) # 17
        net = ConvBnLRelu(1024, kernelSize=3)(net, training=self.training) # 18

        # variational encoder output (distributions)
        mean = Conv2D(filters=self.latentSize, kernel_size=(1, 1),
                      padding='same')(net)
        mean = GlobalAveragePooling2D()(mean)
        logvar = Conv2D(filters=self.latentSize, kernel_size=(1, 1),
                        padding='same')(net)
        logvar = GlobalAveragePooling2D()(logvar)

        sample = SampleLayer(self.latentConstraints, self.beta)([mean, logvar], training=self.training)

        return Model(inputs=inLayer, outputs=sample) 
Example #26
Source Project: BVAE-tf   Author: alecGraves   File: models.py    License: The Unlicense 4 votes vote down vote up
def Build(self):
        # input layer is from GlobalAveragePooling:
        inLayer = Input([self.latentSize], self.batchSize)
        # reexpand the input from flat:
        net = Reshape((1, 1, self.latentSize))(inLayer)
        # darknet downscales input by a factor of 32, so we upsample to the second to last output shape:
        net = UpSampling2D((self.inputShape[0]//32, self.inputShape[1]//32))(net)

        # TODO try inverting num filter arangement (e.g. 512, 1204, 512, 1024, 512)
        # and also try (1, 3, 1, 3, 1) for the filter shape
        net = ConvBnLRelu(1024, kernelSize=3)(net, training=self.training)
        net = ConvBnLRelu(512, kernelSize=1)(net, training=self.training)
        net = ConvBnLRelu(1024, kernelSize=3)(net, training=self.training)
        net = ConvBnLRelu(512, kernelSize=1)(net, training=self.training)
        net = ConvBnLRelu(1024, kernelSize=3)(net, training=self.training)

        net = UpSampling2D((2, 2))(net)
        net = ConvBnLRelu(512, kernelSize=3)(net, training=self.training)
        net = ConvBnLRelu(256, kernelSize=1)(net, training=self.training)
        net = ConvBnLRelu(512, kernelSize=3)(net, training=self.training)
        net = ConvBnLRelu(256, kernelSize=1)(net, training=self.training)
        net = ConvBnLRelu(512, kernelSize=3)(net, training=self.training)

        net = UpSampling2D((2, 2))(net)
        net = ConvBnLRelu(256, kernelSize=3)(net, training=self.training)
        net = ConvBnLRelu(128, kernelSize=1)(net, training=self.training)
        net = ConvBnLRelu(256, kernelSize=3)(net, training=self.training)

        net = UpSampling2D((2, 2))(net)
        net = ConvBnLRelu(128, kernelSize=3)(net, training=self.training)
        net = ConvBnLRelu(64, kernelSize=1)(net, training=self.training)
        net = ConvBnLRelu(128, kernelSize=3)(net, training=self.training)

        net = UpSampling2D((2, 2))(net)
        net = ConvBnLRelu(64, kernelSize=3)(net, training=self.training)

        net = UpSampling2D((2, 2))(net)
        net = ConvBnLRelu(32, kernelSize=3)(net, training=self.training)
        net = ConvBnLRelu(64, kernelSize=1)(net, training=self.training)

        # net = ConvBnLRelu(3, kernelSize=1)(net, training=self.training)
        net = Conv2D(filters=self.inputShape[-1], kernel_size=(1, 1),
                      padding='same', activation="tanh")(net)

        return Model(inLayer, net) 
Example #27
Source Project: ray   Author: ray-project   File: pbt_tune_cifar10_with_keras.py    License: Apache License 2.0 4 votes vote down vote up
def _build_model(self, input_shape):
        x = Input(shape=(32, 32, 3))
        y = x
        y = Convolution2D(
            filters=64,
            kernel_size=3,
            strides=1,
            padding="same",
            activation="relu",
            kernel_initializer="he_normal")(y)
        y = Convolution2D(
            filters=64,
            kernel_size=3,
            strides=1,
            padding="same",
            activation="relu",
            kernel_initializer="he_normal")(y)
        y = MaxPooling2D(pool_size=2, strides=2, padding="same")(y)

        y = Convolution2D(
            filters=128,
            kernel_size=3,
            strides=1,
            padding="same",
            activation="relu",
            kernel_initializer="he_normal")(y)
        y = Convolution2D(
            filters=128,
            kernel_size=3,
            strides=1,
            padding="same",
            activation="relu",
            kernel_initializer="he_normal")(y)
        y = MaxPooling2D(pool_size=2, strides=2, padding="same")(y)

        y = Convolution2D(
            filters=256,
            kernel_size=3,
            strides=1,
            padding="same",
            activation="relu",
            kernel_initializer="he_normal")(y)
        y = Convolution2D(
            filters=256,
            kernel_size=3,
            strides=1,
            padding="same",
            activation="relu",
            kernel_initializer="he_normal")(y)
        y = MaxPooling2D(pool_size=2, strides=2, padding="same")(y)

        y = Flatten()(y)
        y = Dropout(self.config.get("dropout", 0.5))(y)
        y = Dense(
            units=10, activation="softmax", kernel_initializer="he_normal")(y)

        model = Model(inputs=x, outputs=y, name="model1")
        return model 
Example #28
Source Project: speaker-recognition-3d-cnn   Author: imranparuk   File: model.py    License: MIT License 4 votes vote down vote up
def _3d_cnn_model(input_shape, num_classes):
    # Define Model
    inputs = Input(shape=input_shape, name="input-layer")

    # Conv 1
    X = Conv3D(filters=16, kernel_size=(3, 1, 5), strides=(1, 1, 1), name="conv1-1")(inputs)
    X = PReLU(name="activation1-1")(X)
    X = Conv3D(filters=16, kernel_size=(3, 9, 1), strides=(1, 2, 1), name="conv1-2")(X)
    X = PReLU(name="activation1-2")(X)
    X = MaxPool3D(pool_size=(1, 1, 2), strides=(1, 1, 2), padding="valid", name="pool-1")(X)
    # X = Dropout(0.2)(X)

    # Conv 2
    X = Conv3D(filters=32, kernel_size=(3, 1, 4), strides=(1, 1, 1), name="conv2-1")(X)
    X = PReLU(name="activation2-1")(X)
    X = Conv3D(filters=32, kernel_size=(3, 8, 1), strides=(1, 2, 1), name="conv2-2")(X)
    X = PReLU(name="activation2-2")(X)
    X = MaxPool3D(pool_size=(1, 1, 2), strides=(1, 1, 2), padding="valid", name="pool-2")(X)
    # X = Dropout(0.2)(X)

    # Conv 3
    X = Conv3D(filters=64, kernel_size=(3, 1, 3), strides=(1, 1, 1), name="conv3-1")(X)
    X = PReLU(name="activation3-1")(X)
    X = Conv3D(filters=64, kernel_size=(3, 7, 1), strides=(1, 1, 1), name="conv3-2")(X)
    X = PReLU(name="activation3-2")(X)
    # X = Dropout(0.2)(X)

    # Conv 4
    X = Conv3D(filters=128, kernel_size=(3, 1, 3), strides=(1, 1, 1), name="conv4-1")(X)
    X = PReLU(name="activation4-1")(X)
    X = Conv3D(filters=128, kernel_size=(3, 7, 1), strides=(1, 1, 1), name="conv4-2")(X)
    X = PReLU(name="activation4-2")(X)
    # X = Dropout(0.2)(X)

    # Flaten
    X = Flatten()(X)

    # FC
    X = Dense(units=128, name="fc", activation='relu')(X)

    # Final Activation
    X = Dense(units=num_classes, activation='softmax', name="ac_softmax")(X)
    model = Model(inputs=inputs, outputs=X)

    return model 
Example #29
Source Project: attention_keras   Author: thushv89   File: model.py    License: MIT License 4 votes vote down vote up
def define_nmt(hidden_size, batch_size, en_timesteps, en_vsize, fr_timesteps, fr_vsize):
    """ Defining a NMT model """

    # Define an input sequence and process it.
    if batch_size:
        encoder_inputs = Input(batch_shape=(batch_size, en_timesteps, en_vsize), name='encoder_inputs')
        decoder_inputs = Input(batch_shape=(batch_size, fr_timesteps - 1, fr_vsize), name='decoder_inputs')
    else:
        encoder_inputs = Input(shape=(en_timesteps, en_vsize), name='encoder_inputs')
        if fr_timesteps:
            decoder_inputs = Input(shape=(fr_timesteps - 1, fr_vsize), name='decoder_inputs')
        else:
            decoder_inputs = Input(shape=(None, fr_vsize), name='decoder_inputs')

    # Encoder GRU
    encoder_gru = GRU(hidden_size, return_sequences=True, return_state=True, name='encoder_gru')
    encoder_out, encoder_state = encoder_gru(encoder_inputs)

    # Set up the decoder GRU, using `encoder_states` as initial state.
    decoder_gru = GRU(hidden_size, return_sequences=True, return_state=True, name='decoder_gru')
    decoder_out, decoder_state = decoder_gru(decoder_inputs, initial_state=encoder_state)

    # Attention layer
    attn_layer = AttentionLayer(name='attention_layer')
    attn_out, attn_states = attn_layer([encoder_out, decoder_out])

    # Concat attention input and decoder GRU output
    decoder_concat_input = Concatenate(axis=-1, name='concat_layer')([decoder_out, attn_out])

    # Dense layer
    dense = Dense(fr_vsize, activation='softmax', name='softmax_layer')
    dense_time = TimeDistributed(dense, name='time_distributed_layer')
    decoder_pred = dense_time(decoder_concat_input)

    # Full model
    full_model = Model(inputs=[encoder_inputs, decoder_inputs], outputs=decoder_pred)
    full_model.compile(optimizer='adam', loss='categorical_crossentropy')

    full_model.summary()

    """ Inference model """
    batch_size = 1

    """ Encoder (Inference) model """
    encoder_inf_inputs = Input(batch_shape=(batch_size, en_timesteps, en_vsize), name='encoder_inf_inputs')
    encoder_inf_out, encoder_inf_state = encoder_gru(encoder_inf_inputs)
    encoder_model = Model(inputs=encoder_inf_inputs, outputs=[encoder_inf_out, encoder_inf_state])

    """ Decoder (Inference) model """
    decoder_inf_inputs = Input(batch_shape=(batch_size, 1, fr_vsize), name='decoder_word_inputs')
    encoder_inf_states = Input(batch_shape=(batch_size, en_timesteps, hidden_size), name='encoder_inf_states')
    decoder_init_state = Input(batch_shape=(batch_size, hidden_size), name='decoder_init')

    decoder_inf_out, decoder_inf_state = decoder_gru(decoder_inf_inputs, initial_state=decoder_init_state)
    attn_inf_out, attn_inf_states = attn_layer([encoder_inf_states, decoder_inf_out])
    decoder_inf_concat = Concatenate(axis=-1, name='concat')([decoder_inf_out, attn_inf_out])
    decoder_inf_pred = TimeDistributed(dense)(decoder_inf_concat)
    decoder_model = Model(inputs=[encoder_inf_states, decoder_init_state, decoder_inf_inputs],
                          outputs=[decoder_inf_pred, attn_inf_states, decoder_inf_state])

    return full_model, encoder_model, decoder_model 
Example #30
Source Project: attention_keras   Author: thushv89   File: model.py    License: MIT License 4 votes vote down vote up
def define_nmt(hidden_size, batch_size, en_timesteps, en_vsize, fr_timesteps, fr_vsize):
    """ Defining a NMT model """

    # Define an input sequence and process it.
    if batch_size:
        encoder_inputs = Input(batch_shape=(batch_size, en_timesteps, en_vsize), name='encoder_inputs')
        decoder_inputs = Input(batch_shape=(batch_size, fr_timesteps - 1, fr_vsize), name='decoder_inputs')
    else:
        encoder_inputs = Input(shape=(en_timesteps, en_vsize), name='encoder_inputs')
        decoder_inputs = Input(shape=(fr_timesteps - 1, fr_vsize), name='decoder_inputs')

    # Encoder GRU
    encoder_gru = Bidirectional(GRU(hidden_size, return_sequences=True, return_state=True, name='encoder_gru'), name='bidirectional_encoder')
    encoder_out, encoder_fwd_state, encoder_back_state = encoder_gru(encoder_inputs)

    # Set up the decoder GRU, using `encoder_states` as initial state.
    decoder_gru = GRU(hidden_size*2, return_sequences=True, return_state=True, name='decoder_gru')
    decoder_out, decoder_state = decoder_gru(
        decoder_inputs, initial_state=Concatenate(axis=-1)([encoder_fwd_state, encoder_back_state])
    )

    # Attention layer
    attn_layer = AttentionLayer(name='attention_layer')
    attn_out, attn_states = attn_layer([encoder_out, decoder_out])

    # Concat attention input and decoder GRU output
    decoder_concat_input = Concatenate(axis=-1, name='concat_layer')([decoder_out, attn_out])

    # Dense layer
    dense = Dense(fr_vsize, activation='softmax', name='softmax_layer')
    dense_time = TimeDistributed(dense, name='time_distributed_layer')
    decoder_pred = dense_time(decoder_concat_input)

    # Full model
    full_model = Model(inputs=[encoder_inputs, decoder_inputs], outputs=decoder_pred)
    full_model.compile(optimizer='adam', loss='categorical_crossentropy')

    full_model.summary()

    """ Inference model """
    batch_size = 1

    """ Encoder (Inference) model """
    encoder_inf_inputs = Input(batch_shape=(batch_size, en_timesteps, en_vsize), name='encoder_inf_inputs')
    encoder_inf_out, encoder_inf_fwd_state, encoder_inf_back_state = encoder_gru(encoder_inf_inputs)
    encoder_model = Model(inputs=encoder_inf_inputs, outputs=[encoder_inf_out, encoder_inf_fwd_state, encoder_inf_back_state])

    """ Decoder (Inference) model """
    decoder_inf_inputs = Input(batch_shape=(batch_size, 1, fr_vsize), name='decoder_word_inputs')
    encoder_inf_states = Input(batch_shape=(batch_size, en_timesteps, 2*hidden_size), name='encoder_inf_states')
    decoder_init_state = Input(batch_shape=(batch_size, 2*hidden_size), name='decoder_init')

    decoder_inf_out, decoder_inf_state = decoder_gru(
        decoder_inf_inputs, initial_state=decoder_init_state)
    attn_inf_out, attn_inf_states = attn_layer([encoder_inf_states, decoder_inf_out])
    decoder_inf_concat = Concatenate(axis=-1, name='concat')([decoder_inf_out, attn_inf_out])
    decoder_inf_pred = TimeDistributed(dense)(decoder_inf_concat)
    decoder_model = Model(inputs=[encoder_inf_states, decoder_init_state, decoder_inf_inputs],
                          outputs=[decoder_inf_pred, attn_inf_states, decoder_inf_state])

    return full_model, encoder_model, decoder_model