Python matplotlib.scale() Examples
The following are 30 code examples for showing how to use matplotlib.scale(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
matplotlib
, or try the search function
.
Example 1
Project: Computable Author: ktraunmueller File: pyplot.py License: MIT License | 6 votes |
def xscale(*args, **kwargs): """ Set the scaling of the *x*-axis. call signature:: xscale(scale, **kwargs) The available scales are: %(scale)s Different keywords may be accepted, depending on the scale: %(scale_docs)s """ ax = gca() ax.set_xscale(*args, **kwargs) draw_if_interactive()
Example 2
Project: Computable Author: ktraunmueller File: pyplot.py License: MIT License | 6 votes |
def yscale(*args, **kwargs): """ Set the scaling of the *y*-axis. call signature:: yscale(scale, **kwargs) The available scales are: %(scale)s Different keywords may be accepted, depending on the scale: %(scale_docs)s """ ax = gca() ax.set_yscale(*args, **kwargs) draw_if_interactive()
Example 3
Project: matplotlib-4-abaqus Author: Solid-Mechanics File: pyplot.py License: MIT License | 6 votes |
def xscale(*args, **kwargs): """ Set the scaling of the *x*-axis. call signature:: xscale(scale, **kwargs) The available scales are: %(scale)s Different keywords may be accepted, depending on the scale: %(scale_docs)s """ ax = gca() ax.set_xscale(*args, **kwargs) draw_if_interactive()
Example 4
Project: matplotlib-4-abaqus Author: Solid-Mechanics File: pyplot.py License: MIT License | 6 votes |
def yscale(*args, **kwargs): """ Set the scaling of the *y*-axis. call signature:: yscale(scale, **kwargs) The available scales are: %(scale)s Different keywords may be accepted, depending on the scale: %(scale_docs)s """ ax = gca() ax.set_yscale(*args, **kwargs) draw_if_interactive()
Example 5
Project: neural-network-animation Author: miloharper File: _base.py License: MIT License | 6 votes |
def set_xscale(self, value, **kwargs): """ Call signature:: set_xscale(value) Set the scaling of the x-axis: %(scale)s ACCEPTS: [%(scale)s] Different kwargs are accepted, depending on the scale: %(scale_docs)s """ # If the scale is being set to log, clip nonposx to prevent headaches # around zero if value.lower() == 'log' and 'nonposx' not in kwargs.keys(): kwargs['nonposx'] = 'clip' self.xaxis._set_scale(value, **kwargs) self.autoscale_view(scaley=False) self._update_transScale()
Example 6
Project: neural-network-animation Author: miloharper File: _base.py License: MIT License | 6 votes |
def set_yscale(self, value, **kwargs): """ Call signature:: set_yscale(value) Set the scaling of the y-axis: %(scale)s ACCEPTS: [%(scale)s] Different kwargs are accepted, depending on the scale: %(scale_docs)s """ # If the scale is being set to log, clip nonposy to prevent headaches # around zero if value.lower() == 'log' and 'nonposy' not in kwargs.keys(): kwargs['nonposy'] = 'clip' self.yaxis._set_scale(value, **kwargs) self.autoscale_view(scalex=False) self._update_transScale()
Example 7
Project: neural-network-animation Author: miloharper File: pyplot.py License: MIT License | 6 votes |
def xscale(*args, **kwargs): """ Set the scaling of the *x*-axis. call signature:: xscale(scale, **kwargs) The available scales are: %(scale)s Different keywords may be accepted, depending on the scale: %(scale_docs)s """ ax = gca() ax.set_xscale(*args, **kwargs) draw_if_interactive()
Example 8
Project: neural-network-animation Author: miloharper File: pyplot.py License: MIT License | 6 votes |
def magnitude_spectrum(x, Fs=None, Fc=None, window=None, pad_to=None, sides=None, scale=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.magnitude_spectrum(x, Fs=Fs, Fc=Fc, window=window, pad_to=pad_to, sides=sides, scale=scale, **kwargs) draw_if_interactive() finally: ax.hold(washold) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost
Example 9
Project: neural-network-animation Author: miloharper File: pyplot.py License: MIT License | 6 votes |
def specgram(x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None, noverlap=None, cmap=None, xextent=None, pad_to=None, sides=None, scale_by_freq=None, mode=None, scale=None, vmin=None, vmax=None, hold=None, **kwargs): ax = gca() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() if hold is not None: ax.hold(hold) try: ret = ax.specgram(x, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window, noverlap=noverlap, cmap=cmap, xextent=xextent, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, mode=mode, scale=scale, vmin=vmin, vmax=vmax, **kwargs) draw_if_interactive() finally: ax.hold(washold) sci(ret[-1]) return ret # This function was autogenerated by boilerplate.py. Do not edit as # changes will be lost
Example 10
Project: GraphicDesignPatternByPython Author: Relph1119 File: _base.py License: MIT License | 6 votes |
def minorticks_on(self): """ Display minor ticks on the axes. Displaying minor ticks may reduce performance; you may turn them off using `minorticks_off()` if drawing speed is a problem. """ for ax in (self.xaxis, self.yaxis): scale = ax.get_scale() if scale == 'log': s = ax._scale ax.set_minor_locator(mticker.LogLocator(s.base, s.subs)) elif scale == 'symlog': s = ax._scale ax.set_minor_locator( mticker.SymmetricalLogLocator(s._transform, s.subs)) else: ax.set_minor_locator(mticker.AutoMinorLocator())
Example 11
Project: python3_ios Author: holzschu File: _base.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def minorticks_on(self): """ Display minor ticks on the axes. Displaying minor ticks may reduce performance; you may turn them off using `minorticks_off()` if drawing speed is a problem. """ for ax in (self.xaxis, self.yaxis): scale = ax.get_scale() if scale == 'log': s = ax._scale ax.set_minor_locator(mticker.LogLocator(s.base, s.subs)) elif scale == 'symlog': s = ax._scale ax.set_minor_locator( mticker.SymmetricalLogLocator(s._transform, s.subs)) else: ax.set_minor_locator(mticker.AutoMinorLocator())
Example 12
Project: python3_ios Author: holzschu File: pyplot.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def specgram( x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None, noverlap=None, cmap=None, xextent=None, pad_to=None, sides=None, scale_by_freq=None, mode=None, scale=None, vmin=None, vmax=None, *, data=None, **kwargs): __ret = gca().specgram( x, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window, noverlap=noverlap, cmap=cmap, xextent=xextent, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, mode=mode, scale=scale, vmin=vmin, vmax=vmax, **({"data": data} if data is not None else {}), **kwargs) sci(__ret[-1]) return __ret # Autogenerated by boilerplate.py. Do not edit as changes will be lost.
Example 13
Project: FlowCal Author: taborlab File: plot.py License: MIT License | 6 votes |
def transform_non_affine(self, s): """ Apply transformation to a Nx1 numpy array. Parameters ---------- s : array Data to be transformed in display scale units. Return ------ array or masked array Transformed data, in data value units. """ T = self._T M = self._M W = self._W p = self._p # Calculate x return T * 10**(-(M-W)) * (10**(s-W) - (p**2)*10**(-(s-W)/p) + p**2 - 1)
Example 14
Project: ImageFusion Author: pfchai File: _base.py License: MIT License | 6 votes |
def set_xscale(self, value, **kwargs): """ Call signature:: set_xscale(value) Set the scaling of the x-axis: %(scale)s ACCEPTS: [%(scale)s] Different kwargs are accepted, depending on the scale: %(scale_docs)s """ # If the scale is being set to log, clip nonposx to prevent headaches # around zero if value.lower() == 'log' and 'nonposx' not in kwargs.keys(): kwargs['nonposx'] = 'clip' self.xaxis._set_scale(value, **kwargs) self.autoscale_view(scaley=False) self._update_transScale()
Example 15
Project: ImageFusion Author: pfchai File: _base.py License: MIT License | 6 votes |
def set_yscale(self, value, **kwargs): """ Call signature:: set_yscale(value) Set the scaling of the y-axis: %(scale)s ACCEPTS: [%(scale)s] Different kwargs are accepted, depending on the scale: %(scale_docs)s """ # If the scale is being set to log, clip nonposy to prevent headaches # around zero if value.lower() == 'log' and 'nonposy' not in kwargs.keys(): kwargs['nonposy'] = 'clip' self.yaxis._set_scale(value, **kwargs) self.autoscale_view(scalex=False) self._update_transScale()
Example 16
Project: coffeegrindsize Author: jgagneastro File: _base.py License: MIT License | 6 votes |
def minorticks_on(self): """ Display minor ticks on the axes. Displaying minor ticks may reduce performance; you may turn them off using `minorticks_off()` if drawing speed is a problem. """ for ax in (self.xaxis, self.yaxis): scale = ax.get_scale() if scale == 'log': s = ax._scale ax.set_minor_locator(mticker.LogLocator(s.base, s.subs)) elif scale == 'symlog': s = ax._scale ax.set_minor_locator( mticker.SymmetricalLogLocator(s._transform, s.subs)) else: ax.set_minor_locator(mticker.AutoMinorLocator())
Example 17
Project: coffeegrindsize Author: jgagneastro File: pyplot.py License: MIT License | 6 votes |
def specgram( x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None, noverlap=None, cmap=None, xextent=None, pad_to=None, sides=None, scale_by_freq=None, mode=None, scale=None, vmin=None, vmax=None, *, data=None, **kwargs): __ret = gca().specgram( x, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window, noverlap=noverlap, cmap=cmap, xextent=xextent, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, mode=mode, scale=scale, vmin=vmin, vmax=vmax, **({"data": data} if data is not None else {}), **kwargs) sci(__ret[-1]) return __ret # Autogenerated by boilerplate.py. Do not edit as changes will be lost.
Example 18
Project: CogAlg Author: boris-kz File: pyplot.py License: MIT License | 6 votes |
def specgram( x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None, noverlap=None, cmap=None, xextent=None, pad_to=None, sides=None, scale_by_freq=None, mode=None, scale=None, vmin=None, vmax=None, *, data=None, **kwargs): __ret = gca().specgram( x, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window, noverlap=noverlap, cmap=cmap, xextent=xextent, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, mode=mode, scale=scale, vmin=vmin, vmax=vmax, **({"data": data} if data is not None else {}), **kwargs) sci(__ret[-1]) return __ret # Autogenerated by boilerplate.py. Do not edit as changes will be lost.
Example 19
Project: twitter-stock-recommendation Author: alvarobartt File: pyplot.py License: MIT License | 6 votes |
def xscale(*args, **kwargs): """ Set the scaling of the x-axis. Call signature:: xscale(scale, **kwargs) Parameters ---------- scale : [%(scale)s] The scaling type. **kwargs Additional parameters depend on *scale*. See Notes. Notes ----- This is the pyplot equivalent of calling `~.Axes.set_xscale` on the current axes. Different keywords may be accepted, depending on the scale: %(scale_docs)s """ gca().set_xscale(*args, **kwargs)
Example 20
Project: twitter-stock-recommendation Author: alvarobartt File: pyplot.py License: MIT License | 6 votes |
def yscale(*args, **kwargs): """ Set the scaling of the y-axis. Call signature:: yscale(scale, **kwargs) Parameters ---------- scale : [%(scale)s] The scaling type. **kwargs Additional parameters depend on *scale*. See Notes. Notes ----- This is the pyplot equivalent of calling `~.Axes.set_yscale` on the current axes. Different keywords may be accepted, depending on the scale: %(scale_docs)s """ gca().set_yscale(*args, **kwargs)
Example 21
Project: twitter-stock-recommendation Author: alvarobartt File: pyplot.py License: MIT License | 6 votes |
def magnitude_spectrum(x, Fs=None, Fc=None, window=None, pad_to=None, sides=None, scale=None, hold=None, data=None, **kwargs): ax = gca() # Deprecated: allow callers to override the hold state # by passing hold=True|False washold = ax._hold if hold is not None: ax._hold = hold from matplotlib.cbook import mplDeprecation warnings.warn("The 'hold' keyword argument is deprecated since 2.0.", mplDeprecation) try: ret = ax.magnitude_spectrum(x, Fs=Fs, Fc=Fc, window=window, pad_to=pad_to, sides=sides, scale=scale, data=data, **kwargs) finally: ax._hold = washold return ret # Autogenerated by boilerplate.py. Do not edit as changes will be lost.
Example 22
Project: neural-network-animation Author: miloharper File: _base.py License: MIT License | 5 votes |
def _set_lim_and_transforms(self): """ set the *dataLim* and *viewLim* :class:`~matplotlib.transforms.Bbox` attributes and the *transScale*, *transData*, *transLimits* and *transAxes* transformations. .. note:: This method is primarily used by rectilinear projections of the :class:`~matplotlib.axes.Axes` class, and is meant to be overridden by new kinds of projection axes that need different transformations and limits. (See :class:`~matplotlib.projections.polar.PolarAxes` for an example. """ self.transAxes = mtransforms.BboxTransformTo(self.bbox) # Transforms the x and y axis separately by a scale factor. # It is assumed that this part will have non-linear components # (e.g., for a log scale). self.transScale = mtransforms.TransformWrapper( mtransforms.IdentityTransform()) # An affine transformation on the data, generally to limit the # range of the axes self.transLimits = mtransforms.BboxTransformFrom( mtransforms.TransformedBbox(self.viewLim, self.transScale)) # The parentheses are important for efficiency here -- they # group the last two (which are usually affines) separately # from the first (which, with log-scaling can be non-affine). self.transData = self.transScale + (self.transLimits + self.transAxes) self._xaxis_transform = mtransforms.blended_transform_factory( self.transData, self.transAxes) self._yaxis_transform = mtransforms.blended_transform_factory( self.transAxes, self.transData)
Example 23
Project: neural-network-animation Author: miloharper File: _base.py License: MIT License | 5 votes |
def get_data_ratio_log(self): """ Returns the aspect ratio of the raw data in log scale. Will be used when both axis scales are in log. """ xmin, xmax = self.get_xbound() ymin, ymax = self.get_ybound() xsize = max(math.fabs(math.log10(xmax) - math.log10(xmin)), 1e-30) ysize = max(math.fabs(math.log10(ymax) - math.log10(ymin)), 1e-30) return ysize / xsize
Example 24
Project: GraphicDesignPatternByPython Author: Relph1119 File: _base.py License: MIT License | 5 votes |
def _set_lim_and_transforms(self): """ set the *_xaxis_transform*, *_yaxis_transform*, *transScale*, *transData*, *transLimits* and *transAxes* transformations. .. note:: This method is primarily used by rectilinear projections of the :class:`~matplotlib.axes.Axes` class, and is meant to be overridden by new kinds of projection axes that need different transformations and limits. (See :class:`~matplotlib.projections.polar.PolarAxes` for an example. """ self.transAxes = mtransforms.BboxTransformTo(self.bbox) # Transforms the x and y axis separately by a scale factor. # It is assumed that this part will have non-linear components # (e.g., for a log scale). self.transScale = mtransforms.TransformWrapper( mtransforms.IdentityTransform()) # An affine transformation on the data, generally to limit the # range of the axes self.transLimits = mtransforms.BboxTransformFrom( mtransforms.TransformedBbox(self.viewLim, self.transScale)) # The parentheses are important for efficiency here -- they # group the last two (which are usually affines) separately # from the first (which, with log-scaling can be non-affine). self.transData = self.transScale + (self.transLimits + self.transAxes) self._xaxis_transform = mtransforms.blended_transform_factory( self.transData, self.transAxes) self._yaxis_transform = mtransforms.blended_transform_factory( self.transAxes, self.transData)
Example 25
Project: GraphicDesignPatternByPython Author: Relph1119 File: _base.py License: MIT License | 5 votes |
def get_data_ratio_log(self): """ Returns the aspect ratio of the raw data in log scale. Will be used when both axis scales are in log. """ xmin, xmax = self.get_xbound() ymin, ymax = self.get_ybound() xsize = max(abs(math.log10(xmax) - math.log10(xmin)), 1e-30) ysize = max(abs(math.log10(ymax) - math.log10(ymin)), 1e-30) return ysize / xsize
Example 26
Project: GraphicDesignPatternByPython Author: Relph1119 File: _base.py License: MIT License | 5 votes |
def set_xscale(self, value, **kwargs): """ Set the x-axis scale. Parameters ---------- value : {"linear", "log", "symlog", "logit", ...} scaling strategy to apply Notes ----- Different kwargs are accepted, depending on the scale. See the `~matplotlib.scale` module for more information. See also -------- matplotlib.scale.LinearScale : linear transform matplotlib.scale.LogTransform : log transform matplotlib.scale.SymmetricalLogTransform : symlog transform matplotlib.scale.LogisticTransform : logit transform """ g = self.get_shared_x_axes() for ax in g.get_siblings(self): ax.xaxis._set_scale(value, **kwargs) ax._update_transScale() ax.stale = True self.autoscale_view(scaley=False)
Example 27
Project: GraphicDesignPatternByPython Author: Relph1119 File: _base.py License: MIT License | 5 votes |
def set_yscale(self, value, **kwargs): """ Set the y-axis scale. Parameters ---------- value : {"linear", "log", "symlog", "logit", ...} scaling strategy to apply Notes ----- Different kwargs are accepted, depending on the scale. See the `~matplotlib.scale` module for more information. See also -------- matplotlib.scale.LinearScale : linear transform matplotlib.scale.LogTransform : log transform matplotlib.scale.SymmetricalLogTransform : symlog transform matplotlib.scale.LogisticTransform : logit transform """ g = self.get_shared_y_axes() for ax in g.get_siblings(self): ax.yaxis._set_scale(value, **kwargs) ax._update_transScale() ax.stale = True self.autoscale_view(scalex=False)
Example 28
Project: GraphicDesignPatternByPython Author: Relph1119 File: pyplot.py License: MIT License | 5 votes |
def magnitude_spectrum( x, Fs=None, Fc=None, window=None, pad_to=None, sides=None, scale=None, *, data=None, **kwargs): return gca().magnitude_spectrum( x=x, Fs=Fs, Fc=Fc, window=window, pad_to=pad_to, sides=sides, scale=scale, data=data, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost.
Example 29
Project: GraphicDesignPatternByPython Author: Relph1119 File: pyplot.py License: MIT License | 5 votes |
def specgram( x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None, noverlap=None, cmap=None, xextent=None, pad_to=None, sides=None, scale_by_freq=None, mode=None, scale=None, vmin=None, vmax=None, *, data=None, **kwargs): __ret = gca().specgram( x=x, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window, noverlap=noverlap, cmap=cmap, xextent=xextent, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, mode=mode, scale=scale, vmin=vmin, vmax=vmax, data=data, **kwargs) sci(__ret[-1]) return __ret # Autogenerated by boilerplate.py. Do not edit as changes will be lost.
Example 30
Project: python3_ios Author: holzschu File: _base.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def _set_lim_and_transforms(self): """ set the *_xaxis_transform*, *_yaxis_transform*, *transScale*, *transData*, *transLimits* and *transAxes* transformations. .. note:: This method is primarily used by rectilinear projections of the :class:`~matplotlib.axes.Axes` class, and is meant to be overridden by new kinds of projection axes that need different transformations and limits. (See :class:`~matplotlib.projections.polar.PolarAxes` for an example. """ self.transAxes = mtransforms.BboxTransformTo(self.bbox) # Transforms the x and y axis separately by a scale factor. # It is assumed that this part will have non-linear components # (e.g., for a log scale). self.transScale = mtransforms.TransformWrapper( mtransforms.IdentityTransform()) # An affine transformation on the data, generally to limit the # range of the axes self.transLimits = mtransforms.BboxTransformFrom( mtransforms.TransformedBbox(self.viewLim, self.transScale)) # The parentheses are important for efficiency here -- they # group the last two (which are usually affines) separately # from the first (which, with log-scaling can be non-affine). self.transData = self.transScale + (self.transLimits + self.transAxes) self._xaxis_transform = mtransforms.blended_transform_factory( self.transData, self.transAxes) self._yaxis_transform = mtransforms.blended_transform_factory( self.transAxes, self.transData)