Python tensorflow.compat.v1.Session() Examples
The following are 30
code examples of tensorflow.compat.v1.Session().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.compat.v1
, or try the search function
.

Example #1
Source File: ppo_learner.py From tensor2tensor with Apache License 2.0 | 6 votes |
def evaluate(self, env_fn, hparams, sampling_temp): with tf.Graph().as_default(): with tf.name_scope("rl_eval"): eval_env = env_fn(in_graph=True) (collect_memory, _, collect_init) = _define_collect( eval_env, hparams, "ppo_eval", eval_phase=True, frame_stack_size=self.frame_stack_size, force_beginning_resets=False, sampling_temp=sampling_temp, distributional_size=self._distributional_size, ) model_saver = tf.train.Saver( tf.global_variables(hparams.policy_network + "/.*") # tf.global_variables("clean_scope.*") # Needed for sharing params. ) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) collect_init(sess) trainer_lib.restore_checkpoint(self.agent_model_dir, model_saver, sess) sess.run(collect_memory)
Example #2
Source File: player_utils.py From tensor2tensor with Apache License 2.0 | 6 votes |
def __init__(self, hparams, action_space, observation_space, policy_dir): assert hparams.base_algo == "ppo" ppo_hparams = trainer_lib.create_hparams(hparams.base_algo_params) frame_stack_shape = (1, hparams.frame_stack_size) + observation_space.shape self._frame_stack = np.zeros(frame_stack_shape, dtype=np.uint8) with tf.Graph().as_default(): self.obs_t = tf.placeholder(shape=self.frame_stack_shape, dtype=np.uint8) self.logits_t, self.value_function_t = get_policy( self.obs_t, ppo_hparams, action_space ) model_saver = tf.train.Saver( tf.global_variables(scope=ppo_hparams.policy_network + "/.*") # pylint: disable=unexpected-keyword-arg ) self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) trainer_lib.restore_checkpoint(policy_dir, model_saver, self.sess)
Example #3
Source File: rl_utils.py From tensor2tensor with Apache License 2.0 | 6 votes |
def __init__( self, batch_size, observation_space, action_space, policy_hparams, policy_dir, sampling_temp ): super(PolicyAgent, self).__init__( batch_size, observation_space, action_space ) self._sampling_temp = sampling_temp with tf.Graph().as_default(): self._observations_t = tf.placeholder( shape=((batch_size,) + self.observation_space.shape), dtype=self.observation_space.dtype ) (logits, self._values_t) = rl.get_policy( self._observations_t, policy_hparams, self.action_space ) actions = common_layers.sample_with_temperature(logits, sampling_temp) self._probs_t = tf.nn.softmax(logits / sampling_temp) self._actions_t = tf.cast(actions, tf.int32) model_saver = tf.train.Saver( tf.global_variables(policy_hparams.policy_network + "/.*") # pylint: disable=unexpected-keyword-arg ) self._sess = tf.Session() self._sess.run(tf.global_variables_initializer()) trainer_lib.restore_checkpoint(policy_dir, model_saver, self._sess)
Example #4
Source File: simulated_batch_gym_env.py From tensor2tensor with Apache License 2.0 | 6 votes |
def __init__(self, *args, **kwargs): with tf.Graph().as_default(): self._batch_env = SimulatedBatchEnv(*args, **kwargs) self._actions_t = tf.placeholder(shape=(self.batch_size,), dtype=tf.int32) self._rewards_t, self._dones_t = self._batch_env.simulate(self._actions_t) with tf.control_dependencies([self._rewards_t]): self._obs_t = self._batch_env.observ self._indices_t = tf.placeholder(shape=(self.batch_size,), dtype=tf.int32) self._reset_op = self._batch_env.reset( tf.range(self.batch_size, dtype=tf.int32) ) self._sess = tf.Session() self._sess.run(tf.global_variables_initializer()) self._batch_env.initialize(self._sess)
Example #5
Source File: glow_ops_test.py From tensor2tensor with Apache License 2.0 | 6 votes |
def test_invertibility(self, op, name, dropout=0.0): with tf.Graph().as_default(): tf.set_random_seed(42) x = tf.random_uniform(shape=(16, 32, 32, 4)) if op in [glow_ops.affine_coupling, glow_ops.additive_coupling]: with arg_scope([glow_ops.get_dropout], init=False): x_inv, _ = op(name, x, reverse=False, dropout=dropout) x_inv_inv, _ = op(name, x_inv, reverse=True, dropout=dropout) else: x_inv, _ = op(name, x, reverse=False) x_inv_inv, _ = op(name, x_inv, reverse=True) with tf.Session() as session: session.run(tf.global_variables_initializer()) diff = session.run(x - x_inv_inv) self.assertTrue(np.allclose(diff, 0.0, atol=1e-5))
Example #6
Source File: glow_ops_test.py From tensor2tensor with Apache License 2.0 | 6 votes |
def test_temperature_normal(self, temperature): with tf.Graph().as_default(): rng = np.random.RandomState(0) # in numpy, so that multiple calls don't trigger different random numbers. loc_t = tf.convert_to_tensor(rng.randn(5, 5)) scale_t = tf.convert_to_tensor(rng.rand(5, 5)) tempered_normal = glow_ops.TemperedNormal( loc=loc_t, scale=scale_t, temperature=temperature) # smoke test for a single sample. smoke_sample = tempered_normal.sample() samples = tempered_normal.sample((10000,), seed=0) with tf.Session() as sess: ops = [samples, loc_t, scale_t, smoke_sample] samples_np, loc_exp, scale_exp, _ = sess.run(ops) scale_exp *= temperature loc_act = np.mean(samples_np, axis=0) scale_act = np.std(samples_np, axis=0) self.assertTrue(np.allclose(loc_exp, loc_act, atol=1e-2)) self.assertTrue(np.allclose(scale_exp, scale_act, atol=1e-2))
Example #7
Source File: glow_ops_test.py From tensor2tensor with Apache License 2.0 | 6 votes |
def linear_interpolate_rank(self): with tf.Graph().as_default(): # Since rank is 1, the first channel should remain 1.0. # and the second channel should be interpolated between 1.0 and 6.0 z1 = np.ones(shape=(4, 4, 2)) z2 = np.copy(z1) z2[:, :, 0] += 0.01 z2[:, :, 1] += 5.0 coeffs = np.linspace(0.0, 1.0, 11) z1 = np.expand_dims(z1, axis=0) z2 = np.expand_dims(z2, axis=0) tensor1 = tf.convert_to_tensor(z1, dtype=tf.float32) tensor2 = tf.convert_to_tensor(z2, dtype=tf.float32) lin_interp_max = glow_ops.linear_interpolate_rank( tensor1, tensor2, coeffs) with tf.Session() as sess: lin_interp_np_max = sess.run(lin_interp_max) for lin_interp_np, coeff in zip(lin_interp_np_max, coeffs): exp_val = 1.0 + coeff * (6.0 - 1.0) self.assertTrue(np.allclose(lin_interp_np[:, :, 0], 1.0)) self.assertTrue(np.allclose(lin_interp_np[:, :, 1], exp_val))
Example #8
Source File: common_layers_test.py From tensor2tensor with Apache License 2.0 | 6 votes |
def testSpectralNorm(self): # Test that after 20 calls to apply_spectral_norm, the spectral # norm of the normalized matrix is close to 1.0 with tf.Graph().as_default(): weights = tf.get_variable("w", dtype=tf.float32, shape=[2, 3, 50, 100]) weights = tf.multiply(weights, 10.0) normed_weight, assign_op = common_layers.apply_spectral_norm(weights) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for _ in range(20): sess.run(assign_op) normed_weight, assign_op = common_layers.apply_spectral_norm( weights) normed_weight = sess.run(normed_weight).reshape(-1, 100) _, s, _ = np.linalg.svd(normed_weight) self.assertTrue(np.allclose(s[0], 1.0, rtol=0.1))
Example #9
Source File: generator_utils_test.py From tensor2tensor with Apache License 2.0 | 6 votes |
def testDatasetPacking(self): dataset = tf.data.Dataset.from_generator( example_generator, output_types={"inputs": tf.int64, "targets": tf.int64}, output_shapes={"inputs": tf.TensorShape((None,)), "targets": tf.TensorShape((None,))} ) dataset = generator_utils.pack_dataset( dataset, length=5, keys=("inputs", "targets"), use_custom_ops=False) with tf.Session().as_default() as sess: batch = dataset.make_one_shot_iterator().get_next() for reference in reference_packing(): example = sess.run(batch) self.assertAllEqual(set(example.keys()), set(reference.keys())) for k in reference: self.assertAllEqual(example[k], reference[k])
Example #10
Source File: gym_env.py From tensor2tensor with Apache License 2.0 | 6 votes |
def __init__(self, batch_size, *args, **kwargs): self._store_rollouts = kwargs.pop("store_rollouts", True) super(T2TEnv, self).__init__(*args, **kwargs) self.batch_size = batch_size self._rollouts_by_epoch_and_split = collections.OrderedDict() self.current_epoch = None self._should_preprocess_on_reset = True with tf.Graph().as_default() as tf_graph: self._tf_graph = _Noncopyable(tf_graph) self._decoded_image_p = _Noncopyable( tf.placeholder(dtype=tf.uint8, shape=(None, None, None)) ) self._encoded_image_t = _Noncopyable( tf.image.encode_png(self._decoded_image_p.obj) ) self._encoded_image_p = _Noncopyable(tf.placeholder(tf.string)) self._decoded_image_t = _Noncopyable( tf.image.decode_png(self._encoded_image_p.obj) ) self._session = _Noncopyable(tf.Session())
Example #11
Source File: moving_mnist.py From tensor2tensor with Apache License 2.0 | 6 votes |
def generate_samples(self, data_dir, tmp_dir, dataset_split): with tf.Graph().as_default(): # train and eval set are generated on-the-fly. # test set is the official test-set. if dataset_split == problem.DatasetSplit.TEST: moving_ds = self.get_test_iterator(tmp_dir) else: moving_ds = self.get_train_iterator() next_video = moving_ds.get_next() with tf.Session() as sess: sess.run(moving_ds.initializer) n_samples = SPLIT_TO_SIZE[dataset_split] for _ in range(n_samples): next_video_np = sess.run(next_video) for frame_number, frame in enumerate(next_video_np): yield { "frame_number": [frame_number], "frame": frame, }
Example #12
Source File: export.py From tensor2tensor with Apache License 2.0 | 6 votes |
def export_module_spec_with_checkpoint(module_spec, checkpoint_path, export_path, scope_prefix=""): """Exports given checkpoint as tfhub module with given spec.""" # The main requirement is that it is possible to know how to map from # module variable name to checkpoint variable name. # This is trivial if the original code used variable scopes, # but can be messy if the variables to export are interwined # with variables not export. with tf.Graph().as_default(): m = hub.Module(module_spec) assign_map = { scope_prefix + name: value for name, value in m.variable_map.items() } tf.train.init_from_checkpoint(checkpoint_path, assign_map) init_op = tf.initializers.global_variables() with tf.Session() as session: session.run(init_op) m.export(export_path, session)
Example #13
Source File: build_imagenet_data.py From morph-net with Apache License 2.0 | 6 votes |
def __init__(self): # Create a single Session to run all image coding calls. self._sess = tf.Session() # Initializes function that converts PNG to JPEG data. self._png_data = tf.placeholder(dtype=tf.string) image = tf.image.decode_png(self._png_data, channels=3) self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100) # Initializes function that converts CMYK JPEG data to RGB JPEG data. self._cmyk_data = tf.placeholder(dtype=tf.string) image = tf.image.decode_jpeg(self._cmyk_data, channels=0) self._cmyk_to_rgb = tf.image.encode_jpeg(image, format='rgb', quality=100) # Initializes function that decodes RGB JPEG data. self._decode_jpeg_data = tf.placeholder(dtype=tf.string) self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3)
Example #14
Source File: evaluator.py From graphics with Apache License 2.0 | 6 votes |
def _init_graph(self): """Initialize computation graph for tensorflow. """ with self.graph.as_default(): self.refiner = im.ImNet(dim=self.dim, in_features=self.codelen, out_features=self.out_features, num_filters=self.num_filters) self.global_step = tf.get_variable('global_step', shape=[], dtype=tf.int64) self.pts_ph = tf.placeholder(tf.float32, shape=[self.point_batch, 3]) self.lat_ph = tf.placeholder(tf.float32, shape=[self.codelen]) lat = tf.broadcast_to(self.lat_ph[tf.newaxis], [self.point_batch, self.codelen]) code = tf.concat((self.pts_ph, lat), axis=-1) # [pb, 3+c] vals = self.refiner(code, training=False) # [pb, 1] self.vals = tf.squeeze(vals, axis=1) # [pb] self.saver = tf.train.Saver() self.sess = tf.Session() self.saver.restore(self.sess, self.ckpt)
Example #15
Source File: evaluator.py From graphics with Apache License 2.0 | 6 votes |
def _init_graph(self): """Initialize computation graph for tensorflow. """ with self.graph.as_default(): self.encoder = g2v.GridEncoder(in_grid_res=self.in_grid_res, num_filters=self.encoder_nf, codelen=self.codelen, name='g2v') self.grid_ph = tf.placeholder( tf.float32, shape=[None, self.in_grid_res, self.in_grid_res, self.in_grid_res, 1]) self.lats = self.encoder(self.grid_ph, training=False) # [gb, codelen] self.saver = tf.train.Saver() self.sess = tf.Session() self.saver.restore(self.sess, self.ckpt)
Example #16
Source File: evaluator.py From graphics with Apache License 2.0 | 6 votes |
def _init_graph(self): """Initialize computation graph for tensorflow.""" with self.graph.as_default(): self.encoder = g2v.GridEncoder( in_grid_res=self.in_grid_res, num_filters=self.num_filters, codelen=self.codelen, name='g2v') self.global_step = tf.get_variable( 'global_step', shape=[], dtype=tf.int64) self.grid_ph = tf.placeholder( tf.float32, shape=[self.gres, self.gres, self.gres]) self.start_ph = tf.placeholder(tf.int32, shape=[self.grid_batch, 3]) self.ingrid = self._batch_slice(self.grid_ph, self.start_ph, self.in_grid_res, self.grid_batch) self.ingrid = self.ingrid[..., tf.newaxis] self.lats = self.encoder(self.ingrid, training=False) # [gb, codelen] self.saver = tf.train.Saver() self.sess = tf.Session() self.saver.restore(self.sess, self.ckpt)
Example #17
Source File: learning_test.py From tf-slim with Apache License 2.0 | 6 votes |
def testIndexedSlicesGradIsClippedCorrectly(self): sparse_grad_indices = np.array([0, 1, 4]) sparse_grad_dense_shape = [self._grad_vec.size] values = tf.constant(self._grad_vec, dtype=tf.float32) indices = tf.constant(sparse_grad_indices, dtype=tf.int32) dense_shape = tf.constant(sparse_grad_dense_shape, dtype=tf.int32) gradient = ops.IndexedSlices(values, indices, dense_shape) variable = variables_lib.Variable(self._zero_vec, dtype=tf.float32) gradients_to_variables = (gradient, variable) gradients_to_variables = learning.clip_gradient_norms( [gradients_to_variables], self._max_norm)[0] # Ensure the built IndexedSlice has the right form. self.assertEqual(gradients_to_variables[1], variable) self.assertEqual(gradients_to_variables[0].indices, indices) self.assertEqual(gradients_to_variables[0].dense_shape, dense_shape) with tf.Session() as sess: actual_gradient = sess.run(gradients_to_variables[0].values) np_testing.assert_almost_equal(actual_gradient, self._clipped_grad_vec)
Example #18
Source File: learning_test.py From tf-slim with Apache License 2.0 | 6 votes |
def testUseGlobalStep(self): with ops.Graph().as_default(): random_seed.set_random_seed(0) tf_inputs = tf.constant(self._inputs, dtype=tf.float32) tf_labels = tf.constant(self._labels, dtype=tf.float32) tf_predictions = BatchNormClassifier(tf_inputs) loss_ops.log_loss(tf_labels, tf_predictions) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op(total_loss, optimizer) global_step = variables_lib2.get_or_create_global_step() with tf.Session() as sess: # Initialize all variables sess.run(variables_lib.global_variables_initializer()) for _ in range(10): sess.run([train_op]) global_step = global_step.eval() # After 10 updates global_step should be 10. self.assertAllClose(global_step, 10)
Example #19
Source File: learning_test.py From tf-slim with Apache License 2.0 | 6 votes |
def testNoneGlobalStep(self): with ops.Graph().as_default(): random_seed.set_random_seed(0) tf_inputs = tf.constant(self._inputs, dtype=tf.float32) tf_labels = tf.constant(self._labels, dtype=tf.float32) tf_predictions = BatchNormClassifier(tf_inputs) loss_ops.log_loss(tf_labels, tf_predictions) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op( total_loss, optimizer, global_step=None) global_step = variables_lib2.get_or_create_global_step() with tf.Session() as sess: # Initialize all variables sess.run(variables_lib.global_variables_initializer()) for _ in range(10): sess.run([train_op]) global_step = global_step.eval() # Since train_op don't use global_step it shouldn't change. self.assertAllClose(global_step, 0)
Example #20
Source File: tokenization.py From albert with Apache License 2.0 | 6 votes |
def from_hub_module(cls, hub_module, use_spm=True): """Get the vocab file and casing info from the Hub module.""" with tf.Graph().as_default(): albert_module = hub.Module(hub_module) tokenization_info = albert_module(signature="tokenization_info", as_dict=True) with tf.Session() as sess: vocab_file, do_lower_case = sess.run( [tokenization_info["vocab_file"], tokenization_info["do_lower_case"]]) if use_spm: spm_model_file = vocab_file vocab_file = None return FullTokenizer( vocab_file=vocab_file, do_lower_case=do_lower_case, spm_model_file=spm_model_file)
Example #21
Source File: arbitrary_image_stylization_convert_tflite.py From magenta with Apache License 2.0 | 6 votes |
def predict_model_gen(session, style_dataset, sample_count): """Create a generator function that emits style images. Args: session: tf.Session, the session that contains subgraph to load the traning dataset style_dataset: tf.data.Dataset that contains training style images. sample_count: int, number of sample to create. Returns: (str, str) A generator function to use as representative dataset for TFLiteConverter. """ def generator(): dataset = style_dataset.batch(1) iterator = dataset.make_initializable_iterator() session.run(iterator.initializer) next_element = iterator.get_next() for _ in range(sample_count): input_value = session.run(next_element) yield [input_value] return generator
Example #22
Source File: common_joint.py From magenta with Apache License 2.0 | 6 votes |
def build(self): """Build the TF graph and heads for dataspace model. It also prepares different graph, session and heads for sampling and classification respectively. """ config_name = self.config_name config = load_config(config_name) exp_uid = self.exp_uid graph = tf.Graph() with graph.as_default(): sess = tf.Session(graph=graph) m = load_model(model_dataspace.Model, config_name, exp_uid) self.config = config self.graph = graph self.sess = sess self.m = m
Example #23
Source File: cnn_util.py From benchmarks with Apache License 2.0 | 5 votes |
def get_target(self): """Returns a target to be passed to tf.Session().""" raise NotImplementedError('get_target must be implemented by subclass')
Example #24
Source File: tfrecord_image_generator.py From benchmarks with Apache License 2.0 | 5 votes |
def __init__(self): # Create a single Session to run all image coding calls. self._sess = tf.Session() # Initializes function that converts PNG to JPEG data. self._image = tf.placeholder(dtype=tf.uint8) self._encode_jpeg = tf.image.encode_jpeg( self._image, format='rgb', quality=100)
Example #25
Source File: benchmark_cnn.py From benchmarks with Apache License 2.0 | 5 votes |
def _run_eval(self): """Evaluate a model every self.params.eval_interval_secs. Returns: Dictionary containing eval statistics. Currently returns an empty dictionary. Raises: ValueError: If self.params.train_dir is unspecified. """ if self.params.train_dir is None: raise ValueError('Trained model directory not specified') graph_info = self._build_eval_graph() saver = tf.train.Saver(self.variable_mgr.savable_variables()) summary_writer = tf.summary.FileWriter(self.params.eval_dir, tf.get_default_graph()) target = '' # TODO(huangyp): Check if checkpoints haven't updated for hours and abort. while True: with tf.Session( target=target, config=create_config_proto(self.params)) as sess: image_producer = None try: global_step = load_checkpoint(saver, sess, self.params.train_dir) image_producer = self._initialize_eval_graph( graph_info.enqueue_ops, graph_info.input_producer_op, graph_info.local_var_init_op_group, sess) except CheckpointNotFoundException: log_fn('Checkpoint not found in %s' % self.params.train_dir) else: # Only executes if an exception was not thrown self._eval_once(sess, summary_writer, graph_info.fetches, graph_info.summary_op, image_producer, global_step) if image_producer is not None: image_producer.done() if self.params.eval_interval_secs <= 0: break time.sleep(self.params.eval_interval_secs) return {}
Example #26
Source File: albert_tokenization.py From bert-for-tf2 with MIT License | 5 votes |
def from_hub_module(cls, hub_module, spm_model_file): """Get the vocab file and casing info from the Hub module.""" import tensorflow_hub as hub with tf.Graph().as_default(): albert_module = hub.Module(hub_module) tokenization_info = albert_module(signature="tokenization_info", as_dict=True) with tf.Session() as sess: vocab_file, do_lower_case = sess.run( [tokenization_info["vocab_file"], tokenization_info["do_lower_case"]]) return FullTokenizer( vocab_file=vocab_file, do_lower_case=do_lower_case, spm_model_file=spm_model_file)
Example #27
Source File: distributed_shampoo_test.py From lingvo with Apache License 2.0 | 5 votes |
def testTensorPartitioner(self): with tf.Session(): w1 = tf.get_variable('w1', [255, 255], tf.float32) self.evaluate(tf.global_variables_initializer()) partition_info = distributed_shampoo.PartitionConfig(200, 128) grad = tf.constant(w1.eval()) metadata = distributed_shampoo.TensorPartitioner.partition_metadata( w1, partition_info) partitioned_grad = distributed_shampoo.TensorPartitioner.partition_tensor( w1, partition_info) reformed_grad = distributed_shampoo.TensorPartitioner.reform_tensor( partitioned_grad, metadata.num_splits_per_dim) self.assertAllCloseAccordingToType(reformed_grad, grad)
Example #28
Source File: model_tf1.py From machine-learning-for-programming-samples with MIT License | 5 votes |
def __init__(self, hyperparameters: Dict[str, Any], vocab: Vocabulary,) -> None: self.hyperparameters = hyperparameters self.vocab = vocab self._sess = tf.Session(graph=tf.Graph()) self._placeholders = {} self._weights = {} self._ops = {} super().__init__()
Example #29
Source File: batch_dqn_agent_test.py From tensor2tensor with Apache License 2.0 | 5 votes |
def testCreateAgentWithDefaults(self): # Verifies that we can create and train an agent with the default values. with tf.Session() as sess: agent = self._create_test_agent(sess) sess.run(tf.global_variables_initializer()) observation = np.ones([84, 84, 1]) agent.begin_episode([observation]) agent.step(reward=[1], observation=[observation]) agent.end_episode(reward=[1])
Example #30
Source File: video_metrics.py From tensor2tensor with Apache License 2.0 | 5 votes |
def compute_one_decoding_video_metrics(iterator, feed_dict, num_videos): """Computes the average of all the metric for one decoding. Args: iterator: dataset iterator. feed_dict: feed dict to initialize iterator. num_videos: number of videos. Returns: all_psnr: 2-D Numpy array, shape=(num_samples, num_frames) all_ssim: 2-D Numpy array, shape=(num_samples, num_frames) """ output, target = iterator.get_next() metrics = psnr_and_ssim(output, target) with tf.Session() as sess: sess.run(tf.local_variables_initializer()) initalizer = iterator._initializer # pylint: disable=protected-access if initalizer is not None: sess.run(initalizer, feed_dict=feed_dict) all_psnr, all_ssim = [], [] for i in range(num_videos): print("Computing video: %d" % i) psnr_np, ssim_np = sess.run(metrics) all_psnr.append(psnr_np) all_ssim.append(ssim_np) all_psnr = np.array(all_psnr) all_ssim = np.array(all_ssim) return all_psnr, all_ssim