Python keras.applications.DenseNet121() Examples

The following are 2 code examples of keras.applications.DenseNet121(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module keras.applications , or try the search function .
Example #1
Source Project: nyoka   Author: nyoka-pmml   File: _validateSchema.py    License: Apache License 2.0 5 votes vote down vote up
def test_validate_keras_densenet(self):
        input_tensor = Input(shape=(224, 224, 3))
        model = DenseNet121(weights="imagenet", input_tensor=input_tensor)
        file_name = "keras"+model.name+".pmml"
        pmml_obj = KerasToPmml(model,dataSet="image",predictedClasses=[str(i) for i in range(1000)])
        pmml_obj.export(open(file_name,'w'),0)
        self.assertEqual(self.schema.is_valid(file_name), True)

    
    #Exponential Smoothing Test cases 
Example #2
Source Project: vergeml   Author: mme   File: features.py    License: MIT License 4 votes vote down vote up
def get_imagenet_architecture(architecture, variant, size, alpha, output_layer, include_top=False, weights='imagenet'):
    from keras import applications, Model

    if include_top:
        assert output_layer == 'last'

    if size == 'auto':
        size = get_image_size(architecture, variant, size)

    shape = (size, size, 3)

    if architecture == 'densenet':
        if variant == 'auto':
            variant = 'densenet-121'
        if variant == 'densenet-121':
            model = applications.DenseNet121(weights=weights, include_top=include_top, input_shape=shape)
        elif variant == 'densenet-169':
            model = applications.DenseNet169(weights=weights, include_top=include_top, input_shape=shape)
        elif variant == 'densenet-201':
            model = applications.DenseNet201(weights=weights, include_top=include_top, input_shape=shape)
    elif architecture == 'inception-resnet-v2':
        model = applications.InceptionResNetV2(weights=weights, include_top=include_top, input_shape=shape)
    elif architecture == 'mobilenet':
        model = applications.MobileNet(weights=weights, include_top=include_top, input_shape=shape, alpha=alpha)
    elif architecture == 'mobilenet-v2':
        model = applications.MobileNetV2(weights=weights, include_top=include_top, input_shape=shape, alpha=alpha)
    elif architecture == 'nasnet':
        if variant == 'auto':
            variant = 'large'
        if variant == 'large':
            model = applications.NASNetLarge(weights=weights, include_top=include_top, input_shape=shape)
        else:
            model = applications.NASNetMobile(weights=weights, include_top=include_top, input_shape=shape)
    elif architecture == 'resnet-50':
        model = applications.ResNet50(weights=weights, include_top=include_top, input_shape=shape)
    elif architecture == 'vgg-16':
        model = applications.VGG16(weights=weights, include_top=include_top, input_shape=shape)
    elif architecture == 'vgg-19':
        model = applications.VGG19(weights=weights, include_top=include_top, input_shape=shape)
    elif architecture == 'xception':
        model = applications.Xception(weights=weights, include_top=include_top, input_shape=shape)
    elif architecture == 'inception-v3':
        model = applications.InceptionV3(weights=weights, include_top=include_top, input_shape=shape)

    if output_layer != 'last':
        try:
            if isinstance(output_layer, int):
                layer = model.layers[output_layer]
            else:
                layer = model.get_layer(output_layer)
        except Exception:
            raise VergeMLError('layer not found: {}'.format(output_layer))
        model = Model(inputs=model.input, outputs=layer.output)

    return model