Python numpy.seterr() Examples
The following are 30 code examples for showing how to use numpy.seterr(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: recruit Author: Frank-qlu File: test_core.py License: Apache License 2.0 | 6 votes |
def setup(self): # Base data definition. x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) a10 = 10. m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) z = np.array([-.5, 0., .5, .8]) zm = masked_array(z, mask=[0, 1, 0, 0]) xf = np.where(m1, 1e+20, x) xm.set_fill_value(1e+20) self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf) self.err_status = np.geterr() np.seterr(divide='ignore', invalid='ignore')
Example 2
Project: lambda-packs Author: ryfeus File: _distn_infrastructure.py License: MIT License | 6 votes |
def _entropy(self, *args): def integ(x): val = self._pdf(x, *args) return entr(val) # upper limit is often inf, so suppress warnings when integrating olderr = np.seterr(over='ignore') h = integrate.quad(integ, self.a, self.b)[0] np.seterr(**olderr) if not np.isnan(h): return h else: # try with different limits if integration problems low, upp = self.ppf([1e-10, 1. - 1e-10], *args) if np.isinf(self.b): upper = upp else: upper = self.b if np.isinf(self.a): lower = low else: lower = self.a return integrate.quad(integ, lower, upper)[0]
Example 3
Project: lambda-packs Author: ryfeus File: test_core.py License: MIT License | 6 votes |
def setUp(self): # Base data definition. x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) a10 = 10. m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) z = np.array([-.5, 0., .5, .8]) zm = masked_array(z, mask=[0, 1, 0, 0]) xf = np.where(m1, 1e+20, x) xm.set_fill_value(1e+20) self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf) self.err_status = np.geterr() np.seterr(divide='ignore', invalid='ignore')
Example 4
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_core.py License: MIT License | 6 votes |
def setUp(self): # Base data definition. x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) a10 = 10. m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) z = np.array([-.5, 0., .5, .8]) zm = masked_array(z, mask=[0, 1, 0, 0]) xf = np.where(m1, 1e+20, x) xm.set_fill_value(1e+20) self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf) self.err_status = np.geterr() np.seterr(divide='ignore', invalid='ignore')
Example 5
Project: vnpy_crypto Author: birforce File: test_core.py License: MIT License | 6 votes |
def setup(self): # Base data definition. x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) a10 = 10. m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) z = np.array([-.5, 0., .5, .8]) zm = masked_array(z, mask=[0, 1, 0, 0]) xf = np.where(m1, 1e+20, x) xm.set_fill_value(1e+20) self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf) self.err_status = np.geterr() np.seterr(divide='ignore', invalid='ignore')
Example 6
Project: few Author: lacava File: evaluation.py License: GNU General Public License v3.0 | 6 votes |
def evaluate(self,n, features, stack_float, stack_bool,labels=None): """evaluate node in program""" np.seterr(all='ignore') if len(stack_float) >= n.arity['f'] and len(stack_bool) >= n.arity['b']: if n.out_type == 'f': stack_float.append( self.safe(self.eval_dict[n.name](n,features,stack_float, stack_bool,labels))) if (np.isnan(stack_float[-1]).any() or np.isinf(stack_float[-1]).any()): print("problem operator:",n) else: stack_bool.append(self.safe(self.eval_dict[n.name](n,features, stack_float, stack_bool, labels))) if np.isnan(stack_bool[-1]).any() or np.isinf(stack_bool[-1]).any(): print("problem operator:",n)
Example 7
Project: ngraph-python Author: NervanaSystems File: decorators.py License: Apache License 2.0 | 6 votes |
def with_error_settings(**new_settings): """ TODO. Arguments: **new_settings: TODO Returns: """ @decorator.decorator def dec(f, *args, **kwargs): old_settings = np.geterr() np.seterr(**new_settings) ret = f(*args, **kwargs) np.seterr(**old_settings) return ret return dec
Example 8
Project: data-validation Author: tensorflow File: basic_stats_generator_test.py License: Apache License 2.0 | 6 votes |
def test_basic_stats_generator_no_runtime_warnings_close_to_max_int(self): # input has batches with values that are slightly smaller than the maximum # integer value. less_than_max_int_value = np.iinfo(np.int64).max - 1 batches = ([ pa.RecordBatch.from_arrays([pa.array([[less_than_max_int_value]])], ['a']) ] * 2) generator = basic_stats_generator.BasicStatsGenerator() old_nperr = np.geterr() np.seterr(over='raise') accumulators = [ generator.add_input(generator.create_accumulator(), batch) for batch in batches ] generator.merge_accumulators(accumulators) np.seterr(**old_nperr)
Example 9
Project: comb_dist_direct_relex Author: allenai File: test_multilabel_average_precision_metric.py License: Apache License 2.0 | 6 votes |
def test_get_metrics(cls): np.seterr(divide='ignore', invalid='ignore') bins = 1000 diff = 0.01 metric = MultilabelAveragePrecision(bins=bins) size = [1000, 100] pred = Tensor(np.random.uniform(0, 1, size)) gold = Tensor(np.random.randint(0, 2, size)) metric.__call__(pred, gold) fast_ap = metric.get_metric() # calls the fast get_metric ap = metric.get_metric(reset=True) # calls the accurate get_metric assert (abs(ap - fast_ap)) < diff metric.__call__(pred, gold) metric.__call__(pred, gold) metric.__call__(pred, gold) fast_ap = metric.get_metric() ap = metric.get_metric(reset=True) assert (abs(ap - fast_ap)) < diff
Example 10
Project: Computable Author: ktraunmueller File: test_core.py License: MIT License | 6 votes |
def setUp (self): "Base data definition." x = np.array([1., 1., 1., -2., pi / 2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) a10 = 10. m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) z = np.array([-.5, 0., .5, .8]) zm = masked_array(z, mask=[0, 1, 0, 0]) xf = np.where(m1, 1e+20, x) xm.set_fill_value(1e+20) self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf) self.err_status = np.geterr() np.seterr(divide='ignore', invalid='ignore')
Example 11
Project: hadrian Author: modelop File: testKMeans.py License: Apache License 2.0 | 5 votes |
def testKMeans(self): random.seed(12345) numpy.seterr(divide="ignore", invalid="ignore") dataset = numpy.empty((100000, 3), dtype=numpy.dtype(float)) for i, x in enumerate(TestProducerKMeans.data([1, 1, 1], [3, 2, 5], [8, 2, 7], [5, 8, 5], [1, 1, 9])): if i >= dataset.shape[0]: break dataset[i,:] = x kmeans = KMeans(5, dataset) kmeans.optimize(whileall(moving(), maxIterations(1000))) centers = kmeans.centers() self.assertArrayAlmostEqual(centers[0], [1.00, 1.01, 1.00], places=2) self.assertArrayAlmostEqual(centers[1], [1.01, 1.00, 9.01], places=2) self.assertArrayAlmostEqual(centers[2], [3.01, 2.01, 5.00], places=2) self.assertArrayAlmostEqual(centers[3], [4.99, 8.00, 4.99], places=2) self.assertArrayAlmostEqual(centers[4], [8.02, 2.00, 7.01], places=2) doc = kmeans.pfaDocument("Cluster", ["one", "two", "three", "four", "five"]) # look(doc, maxDepth=8) self.assertArrayAlmostEqual(doc["cells"]["clusters"]["init"][0]["center"], [1.00, 1.01, 1.00], places=2) self.assertArrayAlmostEqual(doc["cells"]["clusters"]["init"][1]["center"], [1.01, 1.00, 9.01], places=2) self.assertArrayAlmostEqual(doc["cells"]["clusters"]["init"][2]["center"], [3.01, 2.01, 5.00], places=2) self.assertArrayAlmostEqual(doc["cells"]["clusters"]["init"][3]["center"], [4.99, 8.00, 4.99], places=2) self.assertArrayAlmostEqual(doc["cells"]["clusters"]["init"][4]["center"], [8.02, 2.00, 7.01], places=2) engine, = PFAEngine.fromJson(doc) self.assertEqual(engine.action([1.00, 1.01, 1.00]), "one") self.assertEqual(engine.action([1.01, 1.00, 9.01]), "two") self.assertEqual(engine.action([3.01, 2.01, 5.00]), "three") self.assertEqual(engine.action([4.99, 8.00, 4.99]), "four") self.assertEqual(engine.action([8.02, 2.00, 7.01]), "five")
Example 12
Project: hadrian Author: modelop File: testKMeans.py License: Apache License 2.0 | 5 votes |
def testKMeansTransform(self): random.seed(12345) numpy.seterr(divide="ignore", invalid="ignore") dataset = numpy.empty((100000, 3), dtype=numpy.dtype(float)) for i, (x, y, z) in enumerate(TestProducerKMeans.data([1, 1, 1], [3, 2, 5], [8, 2, 7], [5, 8, 5], [1, 1, 9])): if i >= dataset.shape[0]: break dataset[i,:] = [x * 10.0, y * 20.0, z * 30.0] trans = Transformation("x/10.0", "y/20.0", "z/30.0") kmeans = KMeans(5, trans.transform(dataset, ["x", "y", "z"])) kmeans.optimize(whileall(moving(), maxIterations(1000))) centers = kmeans.centers() self.assertArrayAlmostEqual(centers[0], [1.00, 1.01, 1.00], places=1) self.assertArrayAlmostEqual(centers[1], [1.01, 1.00, 9.01], places=1) self.assertArrayAlmostEqual(centers[2], [3.01, 2.01, 5.00], places=1) self.assertArrayAlmostEqual(centers[3], [4.99, 8.00, 4.99], places=1) self.assertArrayAlmostEqual(centers[4], [8.02, 2.00, 7.01], places=1) doc = kmeans.pfaDocument("Cluster", ["one", "two", "three", "four", "five"], preprocess=trans.new(AvroArray(AvroDouble()), x="input[0]", y="input[1]", z="input[2]")) # look(doc, maxDepth=10) self.assertArrayAlmostEqual(doc["cells"]["clusters"]["init"][0]["center"], [1.00, 1.01, 1.00], places=2) self.assertArrayAlmostEqual(doc["cells"]["clusters"]["init"][1]["center"], [1.01, 1.00, 9.01], places=2) self.assertArrayAlmostEqual(doc["cells"]["clusters"]["init"][2]["center"], [3.01, 2.01, 5.00], places=2) self.assertArrayAlmostEqual(doc["cells"]["clusters"]["init"][3]["center"], [4.99, 8.00, 4.99], places=2) self.assertArrayAlmostEqual(doc["cells"]["clusters"]["init"][4]["center"], [8.02, 2.00, 7.01], places=2) engine, = PFAEngine.fromJson(doc) self.assertEqual(engine.action([1.00 * 10, 1.01 * 20, 1.00 * 30]), "one") self.assertEqual(engine.action([1.01 * 10, 1.00 * 20, 9.01 * 30]), "two") self.assertEqual(engine.action([3.01 * 10, 2.01 * 20, 5.00 * 30]), "three") self.assertEqual(engine.action([4.99 * 10, 8.00 * 20, 4.99 * 30]), "four") self.assertEqual(engine.action([8.02 * 10, 2.00 * 20, 7.01 * 30]), "five")
Example 13
Project: hadrian Author: modelop File: testCart.py License: Apache License 2.0 | 5 votes |
def testCartMustBuildNumericalNumerical(self): random.seed(12345) numpy.seterr(divide="ignore", invalid="ignore") dataset = Dataset.fromIterable(((x, y, z) for (x, y, z, a, b, c) in TestProducerCart.data()), 100000, ("x", "y", "z")) tree = TreeNode.fromWholeDataset(dataset, "z") tree.splitMaxDepth(2) doc = tree.pfaDocument({"type": "record", "name": "Datum", "fields": [{"name": "x", "type": "double"}, {"name": "y", "type": "double"}]}, "TreeNode") # look(doc, maxDepth=8) self.assertEqual(doc["cells"]["tree"]["init"]["field"], "x") self.assertAlmostEqual(doc["cells"]["tree"]["init"]["value"], 4.00, places=2) self.assertEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["field"], "y") self.assertAlmostEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["value"], 6.00, places=2) self.assertAlmostEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["pass"]["double"], 5.00, places=2) self.assertAlmostEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["fail"]["double"], 8.02, places=2) self.assertEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["field"], "y") self.assertAlmostEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["value"], 2.00, places=2) self.assertAlmostEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["pass"]["double"], 1.09, places=2) self.assertAlmostEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["fail"]["double"], 2.00, places=2) engine, = PFAEngine.fromJson(doc) self.assertAlmostEqual(engine.action({"x": 2.0, "y": 3.0}), 5.00, places=2) self.assertAlmostEqual(engine.action({"x": 2.0, "y": 8.0}), 8.02, places=2) self.assertAlmostEqual(engine.action({"x": 7.0, "y": 1.0}), 1.09, places=2) self.assertAlmostEqual(engine.action({"x": 7.0, "y": 5.0}), 2.00, places=2) doc = tree.pfaDocument( {"type": "record", "name": "Datum", "fields": [{"name": "x", "type": "double"}, {"name": "y", "type": "double"}]}, "TreeNode", nodeScores=True, datasetSize=True, predictandUnique=True, nTimesVariance=True, gain=True) # look(doc, maxDepth=8) engine, = PFAEngine.fromJson(doc)
Example 14
Project: hadrian Author: modelop File: testCart.py License: Apache License 2.0 | 5 votes |
def testCartMustBuildNumericalCategorical(self): random.seed(12345) numpy.seterr(divide="ignore", invalid="ignore") dataset = Dataset.fromIterable(((x, y, c) for (x, y, z, a, b, c) in TestProducerCart.data()), 100000, ("x", "y", "c")) tree = TreeNode.fromWholeDataset(dataset, "c") tree.splitMaxDepth(2) doc = tree.pfaDocument({"type": "record", "name": "Datum", "fields": [{"name": "x", "type": "double"}, {"name": "y", "type": "double"}]}, "TreeNode") # look(doc, maxDepth=8) self.assertEqual(doc["cells"]["tree"]["init"]["field"], "x") self.assertAlmostEqual(doc["cells"]["tree"]["init"]["value"], 4.00, places=2) self.assertEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["field"], "y") self.assertAlmostEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["value"], 6.00, places=2) self.assertEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["pass"]["string"], "C3") self.assertEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["fail"]["string"], "C6") self.assertEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["field"], "y") self.assertAlmostEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["value"], 2.00, places=2) self.assertEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["pass"]["string"], "C0") self.assertEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["fail"]["string"], "C0") engine, = PFAEngine.fromJson(doc) self.assertEqual(engine.action({"x": 2.0, "y": 3.0}), "C3") self.assertEqual(engine.action({"x": 2.0, "y": 8.0}), "C6") self.assertEqual(engine.action({"x": 7.0, "y": 1.0}), "C0") self.assertEqual(engine.action({"x": 7.0, "y": 5.0}), "C0") doc = tree.pfaDocument( {"type": "record", "name": "Datum", "fields": [{"name": "x", "type": "double"}, {"name": "y", "type": "double"}]}, "TreeNode", nodeScores=True, datasetSize=True, predictandDistribution=True, predictandUnique=True, entropy=True, gain=True) # look(doc, maxDepth=8) engine, = PFAEngine.fromJson(doc)
Example 15
Project: hadrian Author: modelop File: testCart.py License: Apache License 2.0 | 5 votes |
def testCartMustBuildCategoricalNumerical(self): random.seed(12345) numpy.seterr(divide="ignore", invalid="ignore") dataset = Dataset.fromIterable(((a, b, z) for (x, y, z, a, b, c) in TestProducerCart.data()), 100000, ("a", "b", "z")) tree = TreeNode.fromWholeDataset(dataset, "z") tree.splitMaxDepth(2) doc = tree.pfaDocument({"type": "record", "name": "Datum", "fields": [{"name": "a", "type": "string"}, {"name": "b", "type": "string"}]}, "TreeNode") # look(doc, maxDepth=8) self.assertEqual(doc["cells"]["tree"]["init"]["field"], "a") self.assertEqual(doc["cells"]["tree"]["init"]["value"], ["A0", "A1", "A2", "A3"]) self.assertEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["field"], "b") self.assertEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["value"], ["B6", "B8"]) self.assertAlmostEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["pass"]["double"], 8.02, places=2) self.assertAlmostEqual(doc["cells"]["tree"]["init"]["pass"]["TreeNode"]["fail"]["double"], 5.00, places=2) self.assertEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["field"], "b") self.assertEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["value"], ["B0"]) self.assertAlmostEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["pass"]["double"], 1.09, places=2) self.assertAlmostEqual(doc["cells"]["tree"]["init"]["fail"]["TreeNode"]["fail"]["double"], 2.00, places=2) engine, = PFAEngine.fromJson(doc) self.assertAlmostEqual(engine.action({"a": "A1", "b": "B6"}), 8.02, places=2) self.assertAlmostEqual(engine.action({"a": "A1", "b": "B2"}), 5.00, places=2) self.assertAlmostEqual(engine.action({"a": "A5", "b": "B0"}), 1.09, places=2) self.assertAlmostEqual(engine.action({"a": "A5", "b": "B4"}), 2.00, places=2) doc = tree.pfaDocument( {"type": "record", "name": "Datum", "fields": [{"name": "a", "type": "string"}, {"name": "b", "type": "string"}]}, "TreeNode", nodeScores=True, datasetSize=True, predictandUnique=True, nTimesVariance=True, gain=True) # look(doc, maxDepth=8) engine, = PFAEngine.fromJson(doc)
Example 16
Project: hadrian Author: modelop File: testClustering.py License: Apache License 2.0 | 5 votes |
def doKmeans(self): numpy.seterr(divide="ignore", invalid="ignore") # get a dataset for the k-means generator dataset = [] for record in DataFileReader(open("test/prettypfa/exoplanets.avro", "r"), DatumReader()): mag, dist, mass, radius = record.get("mag"), record.get("dist"), record.get("mass"), record.get("radius") if mag is not None and dist is not None and mass is not None and radius is not None: dataset.append([mag, dist, mass, radius]) # set up and run the k-means generator TestClustering.kmeansResult = KMeans(len(self.clusterNames), numpy.array(dataset)) TestClustering.kmeansResult.optimize(whileall(moving(), maxIterations(1000)))
Example 17
Project: simnibs Author: simnibs File: electrode_placement.py License: GNU General Public License v3.0 | 5 votes |
def _calc_triangle_angles(p, eps=1e-5): p1 = p[:, 0] p2 = p[:, 1] p3 = p[:, 2] e1 = np.linalg.norm(p2 - p1, axis=1) e2 = np.linalg.norm(p3 - p1, axis=1) e3 = np.linalg.norm(p3 - p2, axis=1) # Law Of Cossines state = np.geterr()['invalid'] np.seterr(invalid='ignore') a = np.zeros((p.shape[0], 3)) v = (e1 > eps) * (e2 > eps) a[v, 0] = np.arccos((e2[v] ** 2 + e1[v] ** 2 - e3[v] ** 2) / (2 * e1[v] * e2[v])) a[~v, 0] = 0 v = (e1 > eps) * (e3 > eps) a[v, 1] = np.arccos((e1[v] ** 2 + e3[v] ** 2 - e2[v] ** 2) / (2 * e1[v] * e3[v])) a[~v, 1] = 0 v = (e2 > eps) * (e3 > eps) a[v, 2] = np.arccos((e2[v] ** 2 + e3[v] ** 2 - e1[v] ** 2) / (2 * e2[v] * e3[v])) a[~v, 2] = 0 np.seterr(invalid=state) a[np.isnan(a)] = np.pi return a
Example 18
Project: pyGSTi Author: pyGSTio File: matrixforwardsim.py License: Apache License 2.0 | 5 votes |
def _scaleExp(self, scaleExps): old_err = _np.seterr(over='ignore') scaleVals = _np.exp(scaleExps) # may overflow, but OK if infs occur here _np.seterr(**old_err) return scaleVals
Example 19
Project: recruit Author: Frank-qlu File: test_old_ma.py License: Apache License 2.0 | 5 votes |
def test_testUfuncRegression(self): f_invalid_ignore = [ 'sqrt', 'arctanh', 'arcsin', 'arccos', 'arccosh', 'arctanh', 'log', 'log10', 'divide', 'true_divide', 'floor_divide', 'remainder', 'fmod'] for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', 'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh', 'absolute', 'fabs', 'negative', 'floor', 'ceil', 'logical_not', 'add', 'subtract', 'multiply', 'divide', 'true_divide', 'floor_divide', 'remainder', 'fmod', 'hypot', 'arctan2', 'equal', 'not_equal', 'less_equal', 'greater_equal', 'less', 'greater', 'logical_and', 'logical_or', 'logical_xor']: try: uf = getattr(umath, f) except AttributeError: uf = getattr(fromnumeric, f) mf = getattr(np.ma, f) args = self.d[:uf.nin] with np.errstate(): if f in f_invalid_ignore: np.seterr(invalid='ignore') if f in ['arctanh', 'log', 'log10']: np.seterr(divide='ignore') ur = uf(*args) mr = mf(*args) assert_(eq(ur.filled(0), mr.filled(0), f)) assert_(eqmask(ur.mask, mr.mask))
Example 20
Project: recruit Author: Frank-qlu File: test_core.py License: Apache License 2.0 | 5 votes |
def teardown(self): np.seterr(**self.err_status)
Example 21
Project: recruit Author: Frank-qlu File: test_core.py License: Apache License 2.0 | 5 votes |
def setup(self): # Base data definition. self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6), array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),) self.err_status = np.geterr() np.seterr(divide='ignore', invalid='ignore')
Example 22
Project: recruit Author: Frank-qlu File: test_core.py License: Apache License 2.0 | 5 votes |
def teardown(self): np.seterr(**self.err_status)
Example 23
Project: recruit Author: Frank-qlu File: numeric.py License: Apache License 2.0 | 5 votes |
def __enter__(self): self.oldstate = seterr(**self.kwargs) if self.call is not _Unspecified: self.oldcall = seterrcall(self.call)
Example 24
Project: recruit Author: Frank-qlu File: numeric.py License: Apache License 2.0 | 5 votes |
def __exit__(self, *exc_info): seterr(**self.oldstate) if self.call is not _Unspecified: seterrcall(self.oldcall)
Example 25
Project: recruit Author: Frank-qlu File: test_umath_complex.py License: Apache License 2.0 | 5 votes |
def setup(self): self.olderr = np.seterr(invalid='ignore')
Example 26
Project: recruit Author: Frank-qlu File: test_umath_complex.py License: Apache License 2.0 | 5 votes |
def teardown(self): np.seterr(**self.olderr)
Example 27
Project: recruit Author: Frank-qlu File: test_umath_complex.py License: Apache License 2.0 | 5 votes |
def teardown(self): np.seterr(**self.olderr)
Example 28
Project: recruit Author: Frank-qlu File: test_numeric.py License: Apache License 2.0 | 5 votes |
def test_set(self): with np.errstate(): err = np.seterr() old = np.seterr(divide='print') assert_(err == old) new = np.seterr() assert_(new['divide'] == 'print') np.seterr(over='raise') assert_(np.geterr()['over'] == 'raise') assert_(new['divide'] == 'print') np.seterr(**old) assert_(np.geterr() == old)
Example 29
Project: recruit Author: Frank-qlu File: test_numeric.py License: Apache License 2.0 | 5 votes |
def test_divide_err(self): with np.errstate(divide='raise'): with assert_raises(FloatingPointError): np.array([1.]) / np.array([0.]) np.seterr(divide='ignore') np.array([1.]) / np.array([0.])
Example 30
Project: recruit Author: Frank-qlu File: test_numeric.py License: Apache License 2.0 | 5 votes |
def setup(self): self.olderr = np.seterr(invalid='ignore')