Python PIL.Image.HAMMING Examples
The following are 23
code examples of PIL.Image.HAMMING().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
PIL.Image
, or try the search function
.

Example #1
Source File: color_thread.py From LIFX-Control-Panel with MIT License | 6 votes |
def dominant_screen_color(initial_color, func_bounds=lambda: None): """ https://stackoverflow.com/questions/50899692/most-dominant-color-in-rgb-image-opencv-numpy-python """ monitor = get_monitor_bounds(func_bounds) if "full" in monitor: screenshot = getScreenAsImage() else: screenshot = getRectAsImage(str2list(monitor, int)) downscale_width, downscale_height = screenshot.width // 4, screenshot.height // 4 screenshot = screenshot.resize((downscale_width, downscale_height), Image.HAMMING) a = np.array(screenshot) a2D = a.reshape(-1, a.shape[-1]) col_range = (256, 256, 256) # generically : a2D.max(0)+1 eval_params = {'a0': a2D[:, 0], 'a1': a2D[:, 1], 'a2': a2D[:, 2], 's0': col_range[0], 's1': col_range[1]} a1D = ne.evaluate('a0*s0*s1+a1*s0+a2', eval_params) color = np.unravel_index(np.bincount(a1D).argmax(), col_range) color_hsbk = list(utils.RGBtoHSBK(color, temperature=initial_color[3])) # color_hsbk[2] = initial_color[2] # TODO Decide this return color_hsbk
Example #2
Source File: image.py From pliers with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, size, maintain_aspect_ratio=False, resample='bicubic'): self.size = size self.maintain_aspect_ratio = maintain_aspect_ratio resampling_mapping = { 'nearest': Image.NEAREST, 'bilinear': Image.BILINEAR, 'bicubic': Image.BICUBIC, 'lanczos': Image.LANCZOS, 'box': Image.BOX, 'hamming': Image.HAMMING, } if resample.lower() not in resampling_mapping.keys(): raise ValueError( "Unknown resampling method '{}'. Allowed values are '{}'" .format(resample, "', '".join(resampling_mapping.keys()))) self.resample = resampling_mapping[resample] super().__init__()
Example #3
Source File: utils.py From faceswap with GNU General Public License v3.0 | 6 votes |
def _load_icons(): """ Scan the icons cache folder and load the icons into :attr:`icons` for retrieval throughout the GUI. Returns ------- dict: The icons formatted as described in :attr:`icons` """ size = get_config().user_config_dict.get("icon_size", 16) size = int(round(size * get_config().scaling_factor)) icons = dict() pathicons = os.path.join(PATHCACHE, "icons") for fname in os.listdir(pathicons): name, ext = os.path.splitext(fname) if ext != ".png": continue img = Image.open(os.path.join(pathicons, fname)) img = ImageTk.PhotoImage(img.resize((size, size), resample=Image.HAMMING)) icons[name] = img logger.debug(icons) return icons
Example #4
Source File: resize.py From open_model_zoo with Apache License 2.0 | 6 votes |
def __init__(self, interpolation): if Image is None: raise ImportError( 'pillow backend for resize operation requires TensorFlow. Please install it before usage.' ) self._supported_interpolations = { 'NEAREST': Image.NEAREST, 'NONE': Image.NONE, 'BILINEAR': Image.BILINEAR, 'LINEAR': Image.LINEAR, 'BICUBIC': Image.BICUBIC, 'CUBIC': Image.CUBIC, 'ANTIALIAS': Image.ANTIALIAS, } try: optional_interpolations = { 'BOX': Image.BOX, 'LANCZOS': Image.LANCZOS, 'HAMMING': Image.HAMMING, } self._supported_interpolations.update(optional_interpolations) except AttributeError: pass super().__init__(interpolation)
Example #5
Source File: resize.py From open_model_zoo with Apache License 2.0 | 6 votes |
def supported_interpolations(cls): if Image is None: return {} intrp = { 'NEAREST': Image.NEAREST, 'NONE': Image.NONE, 'BILINEAR': Image.BILINEAR, 'LINEAR': Image.LINEAR, 'BICUBIC': Image.BICUBIC, 'CUBIC': Image.CUBIC, 'ANTIALIAS': Image.ANTIALIAS } try: optional_interpolations = { 'BOX': Image.BOX, 'LANCZOS': Image.LANCZOS, 'HAMMING': Image.HAMMING, } intrp.update(optional_interpolations) except AttributeError: pass return intrp
Example #6
Source File: transforms.py From gen-efficientnet-pytorch with Apache License 2.0 | 5 votes |
def _pil_interp(method): if method == 'bicubic': return Image.BICUBIC elif method == 'lanczos': return Image.LANCZOS elif method == 'hamming': return Image.HAMMING else: # default bilinear, do we want to allow nearest? return Image.BILINEAR
Example #7
Source File: color_thread.py From LIFX-Control-Panel with MIT License | 5 votes |
def avg_screen_color(initial_color, func_bounds=lambda: None): """ Capture an image of the monitor defined by func_bounds, then get the average color of the image in HSBK""" monitor = get_monitor_bounds(func_bounds) if "full" in monitor: screenshot = getScreenAsImage() else: screenshot = getRectAsImage(str2list(monitor, int)) # Resizing the image to 1x1 pixel will give us the average for the whole image (via HAMMING interpolation) color = screenshot.resize((1, 1), Image.HAMMING).getpixel((0, 0)) color_hsbk = list(utils.RGBtoHSBK(color, temperature=initial_color[3])) return color_hsbk
Example #8
Source File: test_image_resample.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_reduce_hamming(self): for mode in ['RGBX', 'RGB', 'La', 'L']: case = self.make_case(mode, (8, 8), 0xe1) case = case.resize((4, 4), Image.HAMMING) data = ('e1 da' 'da d3') for channel in case.split(): self.check_case(channel, self.make_sample(data, (4, 4)))
Example #9
Source File: test_image_resample.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_enlarge_hamming(self): for mode in ['RGBX', 'RGB', 'La', 'L']: case = self.make_case(mode, (2, 2), 0xe1) case = case.resize((4, 4), Image.HAMMING) data = ('e1 d2' 'd2 c5') for channel in case.split(): self.check_case(channel, self.make_sample(data, (4, 4)))
Example #10
Source File: test_image_resample.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_levels_rgba(self): case = self.make_levels_case('RGBA') self.run_levels_case(case.resize((512, 32), Image.BOX)) self.run_levels_case(case.resize((512, 32), Image.BILINEAR)) self.run_levels_case(case.resize((512, 32), Image.HAMMING)) self.run_levels_case(case.resize((512, 32), Image.BICUBIC)) self.run_levels_case(case.resize((512, 32), Image.LANCZOS))
Example #11
Source File: test_image_resample.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_levels_la(self): case = self.make_levels_case('LA') self.run_levels_case(case.resize((512, 32), Image.BOX)) self.run_levels_case(case.resize((512, 32), Image.BILINEAR)) self.run_levels_case(case.resize((512, 32), Image.HAMMING)) self.run_levels_case(case.resize((512, 32), Image.BICUBIC)) self.run_levels_case(case.resize((512, 32), Image.LANCZOS))
Example #12
Source File: test_image_resample.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_dirty_pixels_rgba(self): case = self.make_dirty_case('RGBA', (255, 255, 0, 128), (0, 0, 255, 0)) self.run_dirty_case(case.resize((20, 20), Image.BOX), (255, 255, 0)) self.run_dirty_case(case.resize((20, 20), Image.BILINEAR), (255, 255, 0)) self.run_dirty_case(case.resize((20, 20), Image.HAMMING), (255, 255, 0)) self.run_dirty_case(case.resize((20, 20), Image.BICUBIC), (255, 255, 0)) self.run_dirty_case(case.resize((20, 20), Image.LANCZOS), (255, 255, 0))
Example #13
Source File: test_image_resample.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_wrong_arguments(self): im = hopper() for resample in (Image.NEAREST, Image.BOX, Image.BILINEAR, Image.HAMMING, Image.BICUBIC, Image.LANCZOS): im.resize((32, 32), resample, (0, 0, im.width, im.height)) im.resize((32, 32), resample, (20, 20, im.width, im.height)) im.resize((32, 32), resample, (20, 20, 20, 100)) im.resize((32, 32), resample, (20, 20, 100, 20)) with self.assertRaisesRegex(TypeError, "must be sequence of length 4"): im.resize((32, 32), resample, (im.width, im.height)) with self.assertRaisesRegex(ValueError, "can't be negative"): im.resize((32, 32), resample, (-20, 20, 100, 100)) with self.assertRaisesRegex(ValueError, "can't be negative"): im.resize((32, 32), resample, (20, -20, 100, 100)) with self.assertRaisesRegex(ValueError, "can't be empty"): im.resize((32, 32), resample, (20.1, 20, 20, 100)) with self.assertRaisesRegex(ValueError, "can't be empty"): im.resize((32, 32), resample, (20, 20.1, 100, 20)) with self.assertRaisesRegex(ValueError, "can't be empty"): im.resize((32, 32), resample, (20.1, 20.1, 20, 20)) with self.assertRaisesRegex(ValueError, "can't exceed"): im.resize((32, 32), resample, (0, 0, im.width + 1, im.height)) with self.assertRaisesRegex(ValueError, "can't exceed"): im.resize((32, 32), resample, (0, 0, im.width, im.height + 1))
Example #14
Source File: test_image_resize.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_reduce_filters(self): for f in [Image.NEAREST, Image.BOX, Image.BILINEAR, Image.HAMMING, Image.BICUBIC, Image.LANCZOS]: r = self.resize(hopper("RGB"), (15, 12), f) self.assertEqual(r.mode, "RGB") self.assertEqual(r.size, (15, 12))
Example #15
Source File: test_image_resize.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_enlarge_filters(self): for f in [Image.NEAREST, Image.BOX, Image.BILINEAR, Image.HAMMING, Image.BICUBIC, Image.LANCZOS]: r = self.resize(hopper("RGB"), (212, 195), f) self.assertEqual(r.mode, "RGB") self.assertEqual(r.size, (212, 195))
Example #16
Source File: test_image_resize.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_endianness(self): # Make an image with one colored pixel, in one channel. # When resized, that channel should be the same as a GS image. # Other channels should be unaffected. # The R and A channels should not swap, which is indicative of # an endianness issues. samples = { 'blank': Image.new('L', (2, 2), 0), 'filled': Image.new('L', (2, 2), 255), 'dirty': Image.new('L', (2, 2), 0), } samples['dirty'].putpixel((1, 1), 128) for f in [Image.NEAREST, Image.BOX, Image.BILINEAR, Image.HAMMING, Image.BICUBIC, Image.LANCZOS]: # samples resized with current filter references = { name: self.resize(ch, (4, 4), f) for name, ch in samples.items() } for mode, channels_set in [ ('RGB', ('blank', 'filled', 'dirty')), ('RGBA', ('blank', 'blank', 'filled', 'dirty')), ('LA', ('filled', 'dirty')), ]: for channels in set(permutations(channels_set)): # compile image from different channels permutations im = Image.merge(mode, [samples[ch] for ch in channels]) resized = self.resize(im, (4, 4), f) for i, ch in enumerate(resized.split()): # check what resized channel in image is the same # as separately resized channel self.assert_image_equal(ch, references[channels[i]])
Example #17
Source File: test_image_resize.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_enlarge_zero(self): for f in [Image.NEAREST, Image.BOX, Image.BILINEAR, Image.HAMMING, Image.BICUBIC, Image.LANCZOS]: r = self.resize(Image.new('RGB', (0, 0), "white"), (212, 195), f) self.assertEqual(r.mode, "RGB") self.assertEqual(r.size, (212, 195)) self.assertEqual(r.getdata()[0], (0, 0, 0))
Example #18
Source File: transforms.py From pytorch-image-models with Apache License 2.0 | 5 votes |
def _pil_interp(method): if method == 'bicubic': return Image.BICUBIC elif method == 'lanczos': return Image.LANCZOS elif method == 'hamming': return Image.HAMMING else: # default bilinear, do we want to allow nearest? return Image.BILINEAR
Example #19
Source File: pil_backend.py From nnabla with Apache License 2.0 | 5 votes |
def __init__(self): ImageUtilsBackend.__init__(self) if hasattr(Image, "HAMMING"): # version >3.4.0 self._interpolations_map["hamming"] = Image.HAMMING if hasattr(Image, "BOX"): # version >3.4.0 self._interpolations_map["box"] = Image.BOX if hasattr(Image, "LANCZOS"): # version >1.1.3 self._interpolations_map["lanczos"] = Image.LANCZOS
Example #20
Source File: utils.py From Anime-Super-Resolution with MIT License | 5 votes |
def resize(self, image, size): resamples = [Image.NEAREST, Image.BILINEAR, Image.HAMMING, \ Image.BICUBIC, Image.LANCZOS] resample = random.choice(resamples) return image.resize(size, resample=resample)
Example #21
Source File: multimedia.py From chepy with GNU General Public License v3.0 | 4 votes |
def resize_image( self, width: int, height: int, extension: str = "png", resample: str = "nearest", quality: int = 100, ): """Resize an image. Args: width (int): Required. Width in pixels height (int): Required. Height in pixels extension (str, optional): File extension of loaded image. Defaults to png resample (str, optional): Resample rate. Defaults to "nearest". quality (int, optional): Quality of output. Defaults to 100. Returns: Chepy: The Chepy object. Examples: >>> c = Chepy("image.png").load_file().resize_image(256, 256, "png") >>> c.write_to_file("/path/to/file.png", as_binary=True) """ fh = io.BytesIO() if resample == "nearest": resample = Image.NEAREST elif resample == "antialias": resample = Image.ANTIALIAS elif resample == "bilinear": resample = Image.BILINEAR elif resample == "box": resample = Image.BOX elif resample == "hamming": resample = Image.HAMMING else: # pragma: no cover raise TypeError( "Valid resampling options are: nearest, antialias, bilinear, box and hamming" ) image = Image.open(self._load_as_file()) resized = image.resize((width, height), resample=resample) resized.save(fh, extension, quality=quality) self.state = fh.getvalue() return self
Example #22
Source File: resize.py From dsod.pytorch with MIT License | 4 votes |
def resize(img, boxes, size, max_size=1000, random_interpolation=False): '''Resize the input PIL image to given size. If boxes is not None, resize boxes accordingly. Args: img: (PIL.Image) image to be resized. boxes: (tensor) object boxes, sized [#obj,4]. size: (tuple or int) - if is tuple, resize image to the size. - if is int, resize the shorter side to the size while maintaining the aspect ratio. max_size: (int) when size is int, limit the image longer size to max_size. This is essential to limit the usage of GPU memory. random_interpolation: (bool) randomly choose a resize interpolation method. Returns: img: (PIL.Image) resized image. boxes: (tensor) resized boxes. Example: >> img, boxes = resize(img, boxes, 600) # resize shorter side to 600 >> img, boxes = resize(img, boxes, (500,600)) # resize image size to (500,600) >> img, _ = resize(img, None, (500,600)) # resize image only ''' w, h = img.size if isinstance(size, int): size_min = min(w,h) size_max = max(w,h) sw = sh = float(size) / size_min if sw * size_max > max_size: sw = sh = float(max_size) / size_max ow = int(w * sw + 0.5) oh = int(h * sh + 0.5) else: ow, oh = size sw = float(ow) / w sh = float(oh) / h method = random.choice([ Image.BOX, Image.NEAREST, Image.HAMMING, Image.BICUBIC, Image.LANCZOS, Image.BILINEAR]) if random_interpolation else Image.BILINEAR img = img.resize((ow,oh), method) if boxes is not None: boxes = boxes * torch.Tensor([sw,sh,sw,sh]) return img, boxes
Example #23
Source File: resize.py From torchcv with MIT License | 4 votes |
def resize(img, boxes, size, max_size=1000, random_interpolation=False): '''Resize the input PIL image to given size. If boxes is not None, resize boxes accordingly. Args: img: (PIL.Image) image to be resized. boxes: (tensor) object boxes, sized [#obj,4]. size: (tuple or int) - if is tuple, resize image to the size. - if is int, resize the shorter side to the size while maintaining the aspect ratio. max_size: (int) when size is int, limit the image longer size to max_size. This is essential to limit the usage of GPU memory. random_interpolation: (bool) randomly choose a resize interpolation method. Returns: img: (PIL.Image) resized image. boxes: (tensor) resized boxes. Example: >> img, boxes = resize(img, boxes, 600) # resize shorter side to 600 >> img, boxes = resize(img, boxes, (500,600)) # resize image size to (500,600) >> img, _ = resize(img, None, (500,600)) # resize image only ''' w, h = img.size if isinstance(size, int): size_min = min(w,h) size_max = max(w,h) sw = sh = float(size) / size_min if sw * size_max > max_size: sw = sh = float(max_size) / size_max ow = int(w * sw + 0.5) oh = int(h * sh + 0.5) else: ow, oh = size sw = float(ow) / w sh = float(oh) / h method = random.choice([ Image.BOX, Image.NEAREST, Image.HAMMING, Image.BICUBIC, Image.LANCZOS, Image.BILINEAR]) if random_interpolation else Image.BILINEAR img = img.resize((ow,oh), method) if boxes is not None: boxes = boxes * torch.tensor([sw,sh,sw,sh]) return img, boxes