Python numpy.fabs() Examples
The following are 30 code examples for showing how to use numpy.fabs(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: pyGSTi Author: pyGSTio File: reportableqty.py License: Apache License 2.0 | 6 votes |
def absdiff(self, constant_value, separate_re_im=False): """ Returns a ReportableQty that is the (element-wise in the vector case) difference between `constant_value` and this one given by: `abs(self - constant_value)`. """ if separate_re_im: re_v = _np.fabs(_np.real(self.value) - _np.real(constant_value)) im_v = _np.fabs(_np.imag(self.value) - _np.imag(constant_value)) if self.has_eb(): return (ReportableQty(re_v, _np.fabs(_np.real(self.errbar)), self.nonMarkovianEBs), ReportableQty(im_v, _np.fabs(_np.imag(self.errbar)), self.nonMarkovianEBs)) else: return ReportableQty(re_v), ReportableQty(im_v) else: v = _np.absolute(self.value - constant_value) if self.has_eb(): return ReportableQty(v, _np.absolute(self.errbar), self.nonMarkovianEBs) else: return ReportableQty(v)
Example 2
Project: recruit Author: Frank-qlu File: test_datetimelike.py License: Apache License 2.0 | 6 votes |
def test_irreg_hf(self): idx = date_range('2012-6-22 21:59:51', freq='S', periods=100) df = DataFrame(np.random.randn(len(idx), 2), idx) irreg = df.iloc[[0, 1, 3, 4]] _, ax = self.plt.subplots() irreg.plot(ax=ax) diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff() sec = 1. / 24 / 60 / 60 assert (np.fabs(diffs[1:] - [sec, sec * 2, sec]) < 1e-8).all() _, ax = self.plt.subplots() df2 = df.copy() df2.index = df.index.astype(object) df2.plot(ax=ax) diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff() assert (np.fabs(diffs[1:] - sec) < 1e-8).all()
Example 3
Project: gmpe-smtk Author: GEMScienceTools File: intensity_measures.py License: GNU Affero General Public License v3.0 | 6 votes |
def rotipp(acceleration_x, time_step_x, acceleration_y, time_step_y, periods, percentile, damping=0.05, units="cm/s/s", method="Nigam-Jennings"): """ Returns the rotationally independent spectrum RotIpp as defined by Boore (2010) """ if np.fabs(time_step_x - time_step_y) > 1E-10: raise ValueError("Record pair must have the same time-step!") acceleration_x, acceleration_y = equalise_series(acceleration_x, acceleration_y) target, rota, rotv, rotd, angles = rotdpp(acceleration_x, time_step_x, acceleration_y, time_step_y, periods, percentile, damping, units, method) locn, penalty = _get_gmrotd_penalty( np.hstack([target["PGA"],target["Pseudo-Acceleration"]]), rota) target_theta = np.radians(angles[locn]) arotpp = acceleration_x * np.cos(target_theta) +\ acceleration_y * np.sin(target_theta) spec = get_response_spectrum(arotpp, time_step_x, periods, damping, units, method)[0] spec["GMRot{:2.0f}".format(percentile)] = target return spec
Example 4
Project: NiaPy Author: NiaOrg File: sca.py License: MIT License | 6 votes |
def nextPos(self, x, x_b, r1, r2, r3, r4, task): r"""Move individual to new position in search space. Args: x (numpy.ndarray): Individual represented with components. x_b (nmppy.ndarray): Best individual represented with components. r1 (float): Number dependent on algorithm iteration/generations. r2 (float): Random number in range of 0 and 2 * PI. r3 (float): Random number in range [Rmin, Rmax]. r4 (float): Random number in range [0, 1]. task (Task): Optimization task. Returns: numpy.ndarray: New individual that is moved based on individual ``x``. """ return task.repair(x + r1 * (sin(r2) if r4 < 0.5 else cos(r2)) * fabs(r3 * x_b - x), self.Rand)
Example 5
Project: vnpy_crypto Author: birforce File: norms.py License: MIT License | 6 votes |
def rho(self, z): r""" The robust criterion function for Huber's t. Parameters ---------- z : array-like 1d array Returns ------- rho : array rho(z) = .5*z**2 for \|z\| <= t rho(z) = \|z\|*t - .5*t**2 for \|z\| > t """ z = np.asarray(z) test = self._subset(z) return (test * 0.5 * z**2 + (1 - test) * (np.fabs(z) * self.t - 0.5 * self.t**2))
Example 6
Project: vnpy_crypto Author: birforce File: norms.py License: MIT License | 6 votes |
def weights(self, z): """ Huber's t weighting function for the IRLS algorithm The psi function scaled by z Parameters ---------- z : array-like 1d array Returns ------- weights : array weights(z) = 1 for \|z\| <= t weights(z) = t/\|z\| for \|z\| > t """ z = np.asarray(z) test = self._subset(z) absz = np.fabs(z) absz[test] = 1.0 return test + (1 - test) * self.t / absz
Example 7
Project: vnpy_crypto Author: birforce File: norms.py License: MIT License | 6 votes |
def rho(self, z): r""" The robust criterion function for Ramsay's Ea. Parameters ---------- z : array-like 1d array Returns ------- rho : array rho(z) = a**-2 * (1 - exp(-a*\|z\|)*(1 + a*\|z\|)) """ z = np.asarray(z) return (1 - np.exp(-self.a * np.fabs(z)) * (1 + self.a * np.fabs(z))) / self.a**2
Example 8
Project: vnpy_crypto Author: birforce File: norms.py License: MIT License | 6 votes |
def psi(self, z): """ The psi function for Ramsay's Ea estimator The analytic derivative of rho Parameters ---------- z : array-like 1d array Returns ------- psi : array psi(z) = z*exp(-a*\|z\|) """ z = np.asarray(z) return z * np.exp(-self.a * np.fabs(z))
Example 9
Project: vnpy_crypto Author: birforce File: norms.py License: MIT License | 6 votes |
def weights(self, z): """ Ramsay's Ea weighting function for the IRLS algorithm The psi function scaled by z Parameters ---------- z : array-like 1d array Returns ------- weights : array weights(z) = exp(-a*\|z\|) """ z = np.asarray(z) return np.exp(-self.a * np.fabs(z))
Example 10
Project: vnpy_crypto Author: birforce File: scale.py License: MIT License | 6 votes |
def __call__(self, df_resid, nobs, resid): h = (df_resid)/nobs*(self.d**2 + (1-self.d**2)*\ Gaussian.cdf(self.d)-.5 - self.d/(np.sqrt(2*np.pi))*\ np.exp(-.5*self.d**2)) s = mad(resid) subset = lambda x: np.less(np.fabs(resid/x),self.d) chi = lambda s: subset(s)*(resid/s)**2/2+(1-subset(s))*(self.d**2/2) scalehist = [np.inf,s] niter = 1 while (np.abs(scalehist[niter-1] - scalehist[niter])>self.tol \ and niter < self.maxiter): nscale = np.sqrt(1/(nobs*h)*np.sum(chi(scalehist[-1]))*\ scalehist[-1]**2) scalehist.append(nscale) niter += 1 #if niter == self.maxiter: # raise ValueError("Huber's scale failed to converge") return scalehist[-1]
Example 11
Project: vnpy_crypto Author: birforce File: mixed.py License: MIT License | 6 votes |
def cont(self, ML=False, rtol=1.0e-05, params_rtol=1e-5, params_atol=1e-4): '''convergence check for iterative estimation ''' self.dev, old = self.deviance(ML=ML), self.dev #self.history.append(np.hstack((self.dev, self.a))) self.history['llf'].append(self.dev) self.history['params'].append(self.a.copy()) self.history['D'].append(self.D.copy()) if np.fabs((self.dev - old) / self.dev) < rtol: #why is there times `*`? #print np.fabs((self.dev - old)), self.dev, old self.termination = 'llf' return False #break if parameters converged #TODO: check termination conditions, OR or AND if np.all(np.abs(self.a - self._a_old) < (params_rtol * self.a + params_atol)): self.termination = 'params' return False self._a_old = self.a.copy() return True
Example 12
Project: vnpy_crypto Author: birforce File: test_datetimelike.py License: MIT License | 6 votes |
def test_irreg_hf(self): idx = date_range('2012-6-22 21:59:51', freq='S', periods=100) df = DataFrame(np.random.randn(len(idx), 2), idx) irreg = df.iloc[[0, 1, 3, 4]] _, ax = self.plt.subplots() irreg.plot(ax=ax) diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff() sec = 1. / 24 / 60 / 60 assert (np.fabs(diffs[1:] - [sec, sec * 2, sec]) < 1e-8).all() _, ax = self.plt.subplots() df2 = df.copy() df2.index = df.index.astype(object) df2.plot(ax=ax) diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff() assert (np.fabs(diffs[1:] - sec) < 1e-8).all()
Example 13
Project: vnpy_crypto Author: birforce File: nanops.py License: MIT License | 6 votes |
def _wrap_results(result, dtype): """ wrap our results if needed """ if is_datetime64_dtype(dtype): if not isinstance(result, np.ndarray): result = tslib.Timestamp(result) else: result = result.view(dtype) elif is_timedelta64_dtype(dtype): if not isinstance(result, np.ndarray): # raise if we have a timedelta64[ns] which is too large if np.fabs(result) > _int64_max: raise ValueError("overflow in timedelta operation") result = tslib.Timedelta(result, unit='ns') else: result = result.astype('i8').view(dtype) return result
Example 14
Project: Attentional-PointNet Author: anshulpaigwar File: kitti_evaluation.py License: GNU General Public License v3.0 | 6 votes |
def lidar_to_img(points, img_size): # pdb.set_trace() lidar_data = np.array(points[:, :2]) lidar_data *= 9.9999 lidar_data -= (0.5 * img_size, 0.5 * img_size) lidar_data = np.fabs(lidar_data) lidar_data = lidar_data.astype(np.int32) lidar_data = np.reshape(lidar_data, (-1, 2)) lidar_img = np.zeros((img_size, img_size)) lidar_img[tuple(lidar_data.T)] = 255 return torch.tensor(lidar_img).cuda() # def lidar_to_img(points, img_size): # # pdb.set_trace() # lidar_data = points[:, :2] # lidar_data *= 9.9999 # lidar_data -= torch.tensor((0.5 * img_size, 0.5 * img_size)).cuda() # lidar_data = torch.abs(lidar_data) # lidar_data = torch.floor(lidar_data).long() # lidar_data = lidar_data.view(-1, 2) # lidar_img = torch.zeros((img_size, img_size)).cuda() # lidar_img[lidar_data.permute(1,0)] = 255 # return lidar_img
Example 15
Project: Attentional-PointNet Author: anshulpaigwar File: kitti_LidarImg_data_generator.py License: GNU General Public License v3.0 | 6 votes |
def lidar_to_heightmap(points, img_size): # pdb.set_trace() lidar_data = np.array(points[:, :2]) height_data = np.array(points[:,2]) height_data *= 255/2 height_data[height_data < 0] = 0 height_data[height_data > 255] = 255 height_data = np.fabs(height_data) height_data = height_data.astype(np.int32) lidar_data *= 9.9999 lidar_data -= (0.5 * img_size, 0.5 * img_size) lidar_data = np.fabs(lidar_data) lidar_data = lidar_data.astype(np.int32) lidar_data = np.reshape(lidar_data, (-1, 2)) lidar_img = np.zeros((img_size, img_size)) lidar_img[tuple(lidar_data.T)] = height_data # TODO: sort the point wrt height first lex sort return lidar_img
Example 16
Project: graphics Author: tensorflow File: test_case.py License: Apache License 2.0 | 6 votes |
def _max_error(arrays1, arrays2): """Computes maximum elementwise gap between two lists of ndarrays. Computes the maximum elementwise gap between two lists with the same length, of arrays with the same shape. Args: arrays1: a lists of np.ndarrays. arrays2: a lists of np.ndarrays of the same shape as arrays1. Returns: The maximum elementwise absolute difference between the two lists of arrays. """ error = 0 for array1, array2 in zip(arrays1, arrays2): if array1.size or array2.size: # Handle zero size ndarrays correctly error = np.maximum(error, np.fabs(array1 - array2).max()) return error
Example 17
Project: Computable Author: ktraunmueller File: test_plotting.py License: MIT License | 6 votes |
def test_irreg_hf(self): import matplotlib.pyplot as plt fig = plt.gcf() plt.clf() fig.add_subplot(111) idx = date_range('2012-6-22 21:59:51', freq='S', periods=100) df = DataFrame(np.random.randn(len(idx), 2), idx) irreg = df.ix[[0, 1, 3, 4]] ax = irreg.plot() diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff() sec = 1. / 24 / 60 / 60 self.assert_((np.fabs(diffs[1:] - [sec, sec * 2, sec]) < 1e-8).all()) plt.clf() fig.add_subplot(111) df2 = df.copy() df2.index = df.index.asobject ax = df2.plot() diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff() self.assert_((np.fabs(diffs[1:] - sec) < 1e-8).all())
Example 18
Project: ms_deisotope Author: mobiusklein File: shape_fitter.py License: Apache License 2.0 | 6 votes |
def find_right_intersect(vec, target_val, start_index=0): nearest_index = start_index next_index = start_index size = len(vec) - 1 if next_index == size: return size next_val = vec[next_index] best_distance = np.abs(next_val - target_val) while (next_index < size): next_index += 1 next_val = vec[next_index] dist = np.fabs(next_val - target_val) # pylint: disable=assignment-from-no-return if dist < best_distance: best_distance = dist nearest_index = next_index if next_index == size or next_val < target_val: break return nearest_index
Example 19
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: solver.py License: Apache License 2.0 | 5 votes |
def __init__(self, interval, level=logging.DEBUG, stat=None): self.interval = interval self.level = level if stat is None: def mean_abs(x): return np.fabs(x).mean() self.stat = mean_abs else: self.stat = stat
Example 20
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: solver.py License: Apache License 2.0 | 5 votes |
def __init__(self, interval, level=logging.DEBUG, stat=None): self.interval = interval self.level = level if stat is None: def mean_abs(x): return np.fabs(x).mean() self.stat = mean_abs else: self.stat = stat
Example 21
Project: soccer-matlab Author: utra-robosoccer File: minitaur_evaluate.py License: BSD 2-Clause "Simplified" License | 5 votes |
def evaluate_params(evaluateFunc, params, objectiveParams, urdfRoot='', timeStep=0.01, maxNumSteps=10000, sleepTime=0): print('start evaluation') beforeTime = time.time() p.resetSimulation() p.setTimeStep(timeStep) p.loadURDF("%s/plane.urdf" % urdfRoot) p.setGravity(0,0,-10) global minitaur minitaur = Minitaur(urdfRoot) start_position = current_position() last_position = None # for tracing line total_energy = 0 for i in range(maxNumSteps): torques = minitaur.getMotorTorques() velocities = minitaur.getMotorVelocities() total_energy += np.dot(np.fabs(torques), np.fabs(velocities)) * timeStep joint_values = evaluate_func_map[evaluateFunc](i, params) minitaur.applyAction(joint_values) p.stepSimulation() if (is_fallen()): break if i % 100 == 0: sys.stdout.write('.') sys.stdout.flush() time.sleep(sleepTime) print(' ') alpha = objectiveParams[0] final_distance = np.linalg.norm(start_position - current_position()) finalReturn = final_distance - alpha * total_energy elapsedTime = time.time() - beforeTime print ("trial for ", params, " final_distance", final_distance, "total_energy", total_energy, "finalReturn", finalReturn, "elapsed_time", elapsedTime) return finalReturn
Example 22
Project: pymoo Author: msu-coinlab File: wfg.py License: Apache License 2.0 | 5 votes |
def _transformation_shift_linear(value, shift=0.35): return correct_to_01(np.fabs(value - shift) / np.fabs(np.floor(shift - value) + shift))
Example 23
Project: pymoo Author: msu-coinlab File: wfg.py License: Apache License 2.0 | 5 votes |
def _transformation_shift_deceptive(y, A=0.35, B=0.005, C=0.05): tmp1 = np.floor(y - A + B) * (1.0 - C + (A - B) / B) / (A - B) tmp2 = np.floor(A + B - y) * (1.0 - C + (1.0 - A - B) / B) / (1.0 - A - B) ret = 1.0 + (np.fabs(y - A) - B) * (tmp1 + tmp2 + 1.0 / B) return correct_to_01(ret)
Example 24
Project: pymoo Author: msu-coinlab File: wfg.py License: Apache License 2.0 | 5 votes |
def _transformation_shift_multi_modal(y, A, B, C): tmp1 = np.fabs(y - C) / (2.0 * (np.floor(C - y) + C)) tmp2 = (4.0 * A + 2.0) * np.pi * (0.5 - tmp1) ret = (1.0 + np.cos(tmp2) + 4.0 * B * np.power(tmp1, 2.0)) / (B + 2.0) return correct_to_01(ret)
Example 25
Project: pymoo Author: msu-coinlab File: wfg.py License: Apache License 2.0 | 5 votes |
def _transformation_param_dependent(y, y_deg, A=0.98 / 49.98, B=0.02, C=50.0): aux = A - (1.0 - 2.0 * y_deg) * np.fabs(np.floor(0.5 - y_deg) + A) ret = np.power(y, B + (C - B) * aux) return correct_to_01(ret)
Example 26
Project: pymoo Author: msu-coinlab File: wfg.py License: Apache License 2.0 | 5 votes |
def _transformation_param_deceptive(y, A=0.35, B=0.001, C=0.05): tmp1 = np.floor(y - A + B) * (1.0 - C + (A - B) / B) / (A - B) tmp2 = np.floor(A + B - y) * (1.0 - C + (1.0 - A - B) / B) / (1.0 - A - B) ret = 1.0 + (np.fabs(y - A) - B) * (tmp1 + tmp2 + 1.0 / B) return correct_to_01(ret) # --------------------------------------------------------------------------------------------------------- # REDUCTION # ---------------------------------------------------------------------------------------------------------
Example 27
Project: recruit Author: Frank-qlu File: test_replace.py License: Apache License 2.0 | 5 votes |
def test_replace2(self): N = 100 ser = pd.Series(np.fabs(np.random.randn(N)), tm.makeDateIndex(N), dtype=object) ser[:5] = np.nan ser[6:10] = 'foo' ser[20:30] = 'bar' # replace list with a single value rs = ser.replace([np.nan, 'foo', 'bar'], -1) assert (rs[:5] == -1).all() assert (rs[6:10] == -1).all() assert (rs[20:30] == -1).all() assert (pd.isna(ser[:5])).all() # replace with different values rs = ser.replace({np.nan: -1, 'foo': -2, 'bar': -3}) assert (rs[:5] == -1).all() assert (rs[6:10] == -2).all() assert (rs[20:30] == -3).all() assert (pd.isna(ser[:5])).all() # replace with different values with 2 lists rs2 = ser.replace([np.nan, 'foo', 'bar'], [-1, -2, -3]) tm.assert_series_equal(rs, rs2) # replace inplace ser.replace([np.nan, 'foo', 'bar'], -1, inplace=True) assert (ser[:5] == -1).all() assert (ser[6:10] == -1).all() assert (ser[20:30] == -1).all()
Example 28
Project: recruit Author: Frank-qlu File: nanops.py License: Apache License 2.0 | 5 votes |
def _wrap_results(result, dtype, fill_value=None): """ wrap our results if needed """ if is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype): if fill_value is None: # GH#24293 fill_value = iNaT if not isinstance(result, np.ndarray): tz = getattr(dtype, 'tz', None) assert not isna(fill_value), "Expected non-null fill_value" if result == fill_value: result = np.nan result = tslibs.Timestamp(result, tz=tz) else: result = result.view(dtype) elif is_timedelta64_dtype(dtype): if not isinstance(result, np.ndarray): if result == fill_value: result = np.nan # raise if we have a timedelta64[ns] which is too large if np.fabs(result) > _int64_max: raise ValueError("overflow in timedelta operation") result = tslibs.Timedelta(result, unit='ns') else: result = result.astype('i8').view(dtype) return result
Example 29
Project: PostProcessingPlugin Author: nallath File: Stretch.py License: GNU Affero General Public License v3.0 | 5 votes |
def wideTurn(self, orig_seq, modif_seq): ''' We have to select three points in order to form a triangle These three points should be far enough from each other to have a reliable estimation of the orientation of the current turn ''' dmin_tri = self.line_width / 2.0 ibeg = 0 iend = 2 for i in range(1, len(orig_seq) - 1): dist_from_point = ((orig_seq[i] - orig_seq[i+1:]) ** 2).sum(1) if np.amax(dist_from_point) < dmin_tri * dmin_tri: continue iend = i + 1 + np.argmax(dist_from_point >= dmin_tri * dmin_tri) dist_from_point = ((orig_seq[i] - orig_seq[i-1::-1]) ** 2).sum(1) if np.amax(dist_from_point) < dmin_tri * dmin_tri: continue ibeg = i - 1 - np.argmax(dist_from_point >= dmin_tri * dmin_tri) length_base = ((orig_seq[iend] - orig_seq[ibeg]) ** 2).sum(0) relpos = ((orig_seq[i] - orig_seq[ibeg]) * (orig_seq[iend] - orig_seq[ibeg])).sum(0) if np.fabs(relpos) < 1000.0 * np.fabs(length_base): relpos /= length_base else: relpos = 0.5 projection = orig_seq[ibeg] + relpos * (orig_seq[iend] - orig_seq[ibeg]) dist_from_proj = np.sqrt(((projection - orig_seq[i]) ** 2).sum(0)) if dist_from_proj > 0.001: modif_seq[i] = (orig_seq[i] - (self.wc_stretch / dist_from_proj) * (projection - orig_seq[i])) return
Example 30
Project: gmpe-smtk Author: GEMScienceTools File: configure.py License: GNU Affero General Public License v3.0 | 5 votes |
def __init__(self, magnitude, dip, aspect, tectonic_region='Active Shallow Crust', rake=0., ztor=0., strike=0., msr=WC1994(), initial_point=DEFAULT_POINT, hypocentre_location=None): """ Instantiate the rupture - requires a minimum of a magnitude, dip and aspect ratio """ self.magnitude = magnitude self.dip = dip self.aspect = aspect self.rake = rake self.strike = strike self.location = initial_point self.ztor = ztor self.trt = tectonic_region self.hypo_loc = hypocentre_location # If the top of rupture depth in the initial if fabs(self.location.depth - self.ztor) > 1E-9: self.location.depth = ztor self.msr = msr self.area = self.msr.get_median_area(self.magnitude, self.rake) self.surface = create_planar_surface(self.location, self.strike, self.dip, self.area, self.aspect) self.hypocentre = get_hypocentre_on_planar_surface(self.surface, self.hypo_loc) self.rupture = self.get_rupture() self.target_sites_config = None self.target_sites = None