Python keras.models.model_from_config() Examples
The following are 4 code examples for showing how to use keras.models.model_from_config(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
keras.models
, or try the search function
.
Example 1
Project: crema Author: bmcfee File: base.py License: BSD 2-Clause "Simplified" License | 5 votes |
def _instantiate(self, rsc): # First, load the pump with open(resource_filename(__name__, os.path.join(rsc, 'pump.pkl')), 'rb') as fd: self.pump = pickle.load(fd) # Now load the model with open(resource_filename(__name__, os.path.join(rsc, 'model_spec.pkl')), 'rb') as fd: spec = pickle.load(fd) self.model = model_from_config(spec, custom_objects={k: layers.__dict__[k] for k in layers.__all__}) # And the model weights self.model.load_weights(resource_filename(__name__, os.path.join(rsc, 'model.h5'))) # And the version number with open(resource_filename(__name__, os.path.join(rsc, 'version.txt')), 'r') as fd: self.version = fd.read().strip()
Example 2
Project: keras-rl Author: keras-rl File: util.py License: MIT License | 5 votes |
def clone_model(model, custom_objects={}): # Requires Keras 1.0.7 since get_config has breaking changes. config = { 'class_name': model.__class__.__name__, 'config': model.get_config(), } clone = model_from_config(config, custom_objects=custom_objects) clone.set_weights(model.get_weights()) return clone
Example 3
Project: openai_lab Author: kengz File: util.py License: MIT License | 5 votes |
def clone_model(model, custom_objects=None): from keras.models import model_from_config custom_objects = custom_objects or {} config = { 'class_name': model.__class__.__name__, 'config': model.get_config(), } clone = model_from_config(config, custom_objects=custom_objects) clone.set_weights(model.get_weights()) return clone # clone a keras optimizer without file I/O
Example 4
Project: keras_to_tensorflow Author: alanswx File: convertkeras.py License: MIT License | 4 votes |
def convert(prevmodel,export_path,freeze_graph_binary): # open up a Tensorflow session sess = tf.Session() # tell Keras to use the session K.set_session(sess) # From this document: https://blog.keras.io/keras-as-a-simplified-interface-to-tensorflow-tutorial.html # let's convert the model for inference K.set_learning_phase(0) # all new operations will be in test mode from now on # serialize the model and get its weights, for quick re-building previous_model = load_model(prevmodel) previous_model.summary() config = previous_model.get_config() weights = previous_model.get_weights() # re-build a model where the learning phase is now hard-coded to 0 try: model= Sequential.from_config(config) except: model= Model.from_config(config) #model= model_from_config(config) model.set_weights(weights) print("Input name:") print(model.input.name) print("Output name:") print(model.output.name) output_name=model.output.name.split(':')[0] # not sure what this is for export_version = 1 # version number (integer) graph_file=export_path+"_graph.pb" ckpt_file=export_path+".ckpt" # create a saver saver = tf.train.Saver(sharded=True) tf.train.write_graph(sess.graph_def, '', graph_file) save_path = saver.save(sess, ckpt_file) #~/tensorflow/bazel-bin/tensorflow/python/tools/freeze_graph --input_graph=./graph.pb --input_checkpoint=./model.ckpt --output_node_names=add_72 --output_graph=frozen.pb command = freeze_graph_binary +" --input_graph=./"+graph_file+" --input_checkpoint=./"+ckpt_file+" --output_node_names="+output_name+" --output_graph=./"+export_path+".pb" print(command) os.system(command)