Python keras.models.load_model() Examples
The following are 30 code examples for showing how to use keras.models.load_model(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
keras.models
, or try the search function
.
Example 1
Project: vergeml Author: mme File: imagenet.py License: MIT License | 6 votes |
def load(self, model_dir, architecture, image_size): from keras.models import load_model from vergeml.sources.features import get_preprocess_input labels_txt = os.path.join(model_dir, "labels.txt") if not os.path.exists(labels_txt): raise VergeMLError("labels.txt not found: {}".format(labels_txt)) model_h5 = os.path.join(model_dir, "model.h5") if not os.path.exists(model_h5): raise VergeMLError("model.h5 not found: {}".format(model_h5)) with open(labels_txt, "r") as f: self.labels = f.read().splitlines() self.model = load_model(model_h5) self.image_size = image_size self.preprocess_input = get_preprocess_input(architecture)
Example 2
Project: vergeml Author: mme File: features.py License: MIT License | 6 votes |
def get_custom_architecture(name, trainings_dir, output_layer): from keras.models import load_model, Model name = name.lstrip("@") model = load_model(os.path.join(trainings_dir, name, 'checkpoints', 'model.h5')) try: if isinstance(output_layer, int): layer = model.layers[output_layer] else: layer = model.get_layer(output_layer) except Exception: if isinstance(output_layer, int): raise VergeMLError(f'output-layer {output_layer} not found - model has only {len(model.layers)} layers.') else: candidates = list(map(lambda l: l.name, model.layers)) raise VergeMLError(f'output-layer named {output_layer} not found.', suggestion=did_you_mean(candidates, output_layer)) model = Model(inputs=model.input, outputs=layer.output) return model
Example 3
Project: Sound-Recognition-Tutorial Author: JasonZhang156 File: test.py License: Apache License 2.0 | 6 votes |
def CNN_test(test_fold, feat): """ Test model using test set :param test_fold: test fold of 5-fold cross validation :param feat: which feature to use """ # 读取测试数据 _, _, test_features, test_labels = esc10_input.get_data(test_fold, feat) # 导入训练好的模型 model = load_model('./saved_model/cnn_{}_fold{}.h5'.format(feat, test_fold)) # 输出训练好的模型在测试集上的表现 score = model.evaluate(test_features, test_labels) print('Test score:', score[0]) print('Test accuracy:', score[1]) return score[1]
Example 4
Project: cnn-levelset Author: wiseodd File: localizer.py License: MIT License | 6 votes |
def __init__(self, model_path=None): if model_path is not None: self.model = self.load_model(model_path) else: # VGG16 last conv features inputs = Input(shape=(7, 7, 512)) x = Convolution2D(128, 1, 1)(inputs) x = Flatten()(x) # Cls head h_cls = Dense(256, activation='relu', W_regularizer=l2(l=0.01))(x) h_cls = Dropout(p=0.5)(h_cls) cls_head = Dense(20, activation='softmax', name='cls')(h_cls) # Reg head h_reg = Dense(256, activation='relu', W_regularizer=l2(l=0.01))(x) h_reg = Dropout(p=0.5)(h_reg) reg_head = Dense(4, activation='linear', name='reg')(h_reg) # Joint model self.model = Model(input=inputs, output=[cls_head, reg_head])
Example 5
Project: spark-deep-learning Author: databricks File: shared_params.py License: Apache License 2.0 | 6 votes |
def _loadTFGraph(self, sess, graph): """ Loads the Keras model into memory, then uses the passed-in session to load the model's inference-related ops into the passed-in Tensorflow graph. :return: A tuple (graph, input_name, output_name) where graph is the TF graph corresponding to the Keras model's inference subgraph, input_name is the name of the Keras model's input tensor, and output_name is the name of the Keras model's output tensor. """ keras_backend = K.backend() assert keras_backend == "tensorflow", \ "Only tensorflow-backed Keras models are supported, tried to load Keras model " \ "with backend %s." % (keras_backend) with graph.as_default(): K.set_learning_phase(0) # Inference phase model = load_model(self.getModelFile()) out_op_name = tfx.op_name(model.output, graph) stripped_graph = tfx.strip_and_freeze_until([out_op_name], graph, sess, return_graph=True) return stripped_graph, model.input.name, model.output.name
Example 6
Project: multi-object-tracking Author: jguoaj File: yolo.py License: GNU General Public License v3.0 | 6 votes |
def generate(self): model_path = os.path.expanduser(self.model_path) assert model_path.endswith('.h5'), 'Keras model must be a .h5 file.' self.yolo_model = load_model(model_path, compile=False) print('{} model, anchors, and classes loaded.'.format(model_path)) # Generate colors for drawing bounding boxes. hsv_tuples = [(x / len(self.class_names), 1., 1.) for x in range(len(self.class_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) random.seed(10101) # Fixed seed for consistent colors across runs. random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes. random.seed(None) # Reset seed to default. # Generate output tensor targets for filtered bounding boxes. self.input_image_shape = K.placeholder(shape=(2, )) boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors, len(self.class_names), self.input_image_shape, score_threshold=self.score, iou_threshold=self.iou) return boxes, scores, classes
Example 7
Project: MELD Author: declare-lab File: baseline.py License: GNU General Public License v3.0 | 6 votes |
def test_model(self): model = load_model(self.PATH) intermediate_layer_model = Model(input=model.input, output=model.get_layer("utter").output) intermediate_output_train = intermediate_layer_model.predict(self.train_x) intermediate_output_val = intermediate_layer_model.predict(self.val_x) intermediate_output_test = intermediate_layer_model.predict(self.test_x) train_emb, val_emb, test_emb = {}, {}, {} for idx, ID in enumerate(self.train_id): train_emb[ID] = intermediate_output_train[idx] for idx, ID in enumerate(self.val_id): val_emb[ID] = intermediate_output_val[idx] for idx, ID in enumerate(self.test_id): test_emb[ID] = intermediate_output_test[idx] pickle.dump([train_emb, val_emb, test_emb], open(self.OUTPUT_PATH, "wb")) self.calc_test_result(model.predict(self.test_x), self.test_y, self.test_mask)
Example 8
Project: face_classification Author: oarriaga File: grad_cam.py License: MIT License | 6 votes |
def modify_backprop(model, name, task): graph = tf.get_default_graph() with graph.gradient_override_map({'Relu': name}): # get layers that have an activation activation_layers = [layer for layer in model.layers if hasattr(layer, 'activation')] # replace relu activation for layer in activation_layers: if layer.activation == keras.activations.relu: layer.activation = tf.nn.relu # re-instanciate a new model if task == 'gender': model_path = '../trained_models/gender_models/gender_mini_XCEPTION.21-0.95.hdf5' elif task == 'emotion': model_path = '../trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5' # model_path = '../trained_models/fer2013_mini_XCEPTION.119-0.65.hdf5' # model_path = '../trained_models/fer2013_big_XCEPTION.54-0.66.hdf5' new_model = load_model(model_path, compile=False) return new_model
Example 9
Project: evo-pawness Author: haryoa File: reinforcement_algorithm.py License: GNU General Public License v3.0 | 6 votes |
def __init__(self, init_state, max_simulation=AlphaZeroConfig.MAX_SIMULATION_AGENT, MODEL_PATH=AlphaZeroConfig.DEFAULT_MODEL_AGENT): """ Contructor of AlphaZero Agent :param init_state: the initial state of the game. It will be used continuously :param max_simulation: MCTS max simulation :param MODEL_PATH: Model Path used for AlphaZero Agent """ self.max_simulation = max_simulation all_action_spaces = action_spaces_new() self.ae = ActionEncoder() self.ae.fit(list_all_action=all_action_spaces) self.stacked_state = StackedState(init_state) self.deepnet_model = PawnNetZero(len(all_action_spaces)) self.deepnet_model.model = load_model(MODEL_PATH) self.mcts = MCTreeSearch(self.deepnet_model.model, 1, self.max_simulation, self.ae, self.stacked_state)
Example 10
Project: shopping-classification Author: kakao-arena File: classifier.py License: Apache License 2.0 | 6 votes |
def predict(self, data_root, model_root, test_root, test_div, out_path, readable=False): meta_path = os.path.join(data_root, 'meta') meta = cPickle.loads(open(meta_path, 'rb').read()) model_fname = os.path.join(model_root, 'model.h5') self.logger.info('# of classes(train): %s' % len(meta['y_vocab'])) model = load_model(model_fname, custom_objects={'top1_acc': top1_acc}) test_path = os.path.join(test_root, 'data.h5py') test_data = h5py.File(test_path, 'r') test = test_data[test_div] batch_size = opt.batch_size pred_y = [] test_gen = ThreadsafeIter(self.get_sample_generator(test, batch_size, raise_stop_event=True)) total_test_samples = test['uni'].shape[0] with tqdm.tqdm(total=total_test_samples) as pbar: for chunk in test_gen: total_test_samples = test['uni'].shape[0] X, _ = chunk _pred_y = model.predict(X) pred_y.extend([np.argmax(y) for y in _pred_y]) pbar.update(X[0].shape[0]) self.write_prediction_result(test, pred_y, meta, out_path, readable=readable)
Example 11
Project: Emotion Author: petercunha File: grad_cam.py License: MIT License | 6 votes |
def modify_backprop(model, name, task): graph = tf.get_default_graph() with graph.gradient_override_map({'Relu': name}): # get layers that have an activation activation_layers = [layer for layer in model.layers if hasattr(layer, 'activation')] # replace relu activation for layer in activation_layers: if layer.activation == keras.activations.relu: layer.activation = tf.nn.relu # re-instanciate a new model if task == 'gender': model_path = '../trained_models/gender_models/gender_mini_XCEPTION.21-0.95.hdf5' elif task == 'emotion': model_path = '../trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5' # model_path = '../trained_models/fer2013_mini_XCEPTION.119-0.65.hdf5' # model_path = '../trained_models/fer2013_big_XCEPTION.54-0.66.hdf5' new_model = load_model(model_path, compile=False) return new_model
Example 12
Project: Face-and-Emotion-Recognition Author: vjgpt File: grad_cam.py License: MIT License | 6 votes |
def modify_backprop(model, name, task): graph = tf.get_default_graph() with graph.gradient_override_map({'Relu': name}): # get layers that have an activation activation_layers = [layer for layer in model.layers if hasattr(layer, 'activation')] # replace relu activation for layer in activation_layers: if layer.activation == keras.activations.relu: layer.activation = tf.nn.relu # re-instanciate a new model if task == 'gender': model_path = '../trained_models/gender_models/gender_mini_XCEPTION.21-0.95.hdf5' elif task == 'emotion': model_path = '../trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5' # model_path = '../trained_models/fer2013_mini_XCEPTION.119-0.65.hdf5' # model_path = '../trained_models/fer2013_big_XCEPTION.54-0.66.hdf5' new_model = load_model(model_path, compile=False) return new_model
Example 13
Project: YOLO-3D-Box Author: scutan90 File: yolo.py License: MIT License | 6 votes |
def generate(self): model_path = os.path.expanduser(self.model_path) assert model_path.endswith('.h5'), 'Keras model must be a .h5 file.' self.yolo_model = load_model(model_path, compile=False) print('{} model, anchors, and classes loaded.'.format(model_path)) # Generate colors for drawing bounding boxes. hsv_tuples = [(x / len(self.class_names), 1., 1.) for x in range(len(self.class_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) random.seed(10101) # Fixed seed for consistent colors across runs. random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes. random.seed(None) # Reset seed to default. # Generate output tensor targets for filtered bounding boxes. self.input_image_shape = K.placeholder(shape=(2, )) boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors, len(self.class_names), self.input_image_shape, score_threshold=self.score, iou_threshold=self.iou) return boxes, scores, classes
Example 14
Project: deep_sort_yolov3 Author: Qidian213 File: yolo.py License: GNU General Public License v3.0 | 6 votes |
def generate(self): model_path = os.path.expanduser(self.model_path) assert model_path.endswith('.h5'), 'Keras model must be a .h5 file.' self.yolo_model = load_model(model_path, compile=False) print('{} model, anchors, and classes loaded.'.format(model_path)) # Generate colors for drawing bounding boxes. hsv_tuples = [(x / len(self.class_names), 1., 1.) for x in range(len(self.class_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) random.seed(10101) # Fixed seed for consistent colors across runs. random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes. random.seed(None) # Reset seed to default. # Generate output tensor targets for filtered bounding boxes. self.input_image_shape = K.placeholder(shape=(2, )) boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors, len(self.class_names), self.input_image_shape, score_threshold=self.score, iou_threshold=self.iou) return boxes, scores, classes
Example 15
Project: PSPNet-Keras-tensorflow Author: Vladkryvoruchko File: pspnet.py License: MIT License | 6 votes |
def __init__(self, nb_classes, resnet_layers, input_shape, weights): self.input_shape = input_shape self.num_classes = nb_classes json_path = join("weights", "keras", weights + ".json") h5_path = join("weights", "keras", weights + ".h5") if 'pspnet' in weights: if os.path.isfile(json_path) and os.path.isfile(h5_path): print("Keras model & weights found, loading...") with CustomObjectScope({'Interp': layers.Interp}): with open(json_path) as file_handle: self.model = model_from_json(file_handle.read()) self.model.load_weights(h5_path) else: print("No Keras model & weights found, import from npy weights.") self.model = layers.build_pspnet(nb_classes=nb_classes, resnet_layers=resnet_layers, input_shape=self.input_shape) self.set_npy_weights(weights) else: print('Load pre-trained weights') self.model = load_model(weights)
Example 16
Project: Coloring-greyscale-images Author: emilwallner File: load_trained_models.py License: MIT License | 6 votes |
def __init__(self, resource_path='./resources/', learning_rate=0.0002, decay_rate=2e-6, gpus = 1): self.gpus = gpus self.learning_rate = learning_rate self.decay_rate = decay_rate def zero_loss(y_true, y_pred): return K.zeros_like(y_true) discriminator_full = load_model(resource_path + 'discriminator_full.h5', custom_objects={'Conv2D_r': Conv2D_r, 'InstanceNormalization': InstanceNormalization, 'tf': tf, 'zero_loss': zero_loss, 'ConvSN2D': ConvSN2D, 'DenseSN': DenseSN}) discriminator_full.trainable = True discriminator_full.name = "discriminator_full" self.model = discriminator_full self.save_model = discriminator_full
Example 17
Project: Coloring-greyscale-images Author: emilwallner File: load_trained_models.py License: MIT License | 6 votes |
def __init__(self, resource_path='./resources/', learning_rate=0.0002, decay_rate=2e-6, gpus = 0): self.gpus = gpus self.learning_rate = learning_rate self.decay_rate = decay_rate def zero_loss(y_true, y_pred): return K.zeros_like(y_true) discriminator_low = load_model(resource_path + 'discriminator_low.h5', custom_objects={'Conv2D_r': Conv2D_r, 'InstanceNormalization': InstanceNormalization, 'tf': tf,'zero_loss': zero_loss, 'ConvSN2D': ConvSN2D, 'DenseSN': DenseSN}) discriminator_low.trainable = True discriminator_low.name = "discriminator_low" self.model = discriminator_low self.save_model = discriminator_low
Example 18
Project: Vehicle-Detection-and-Tracking-Usig-YOLO-and-Deep-Sort-with-Keras-and-Tensorflow Author: Akhtar303 File: yolo.py License: MIT License | 6 votes |
def generate(self): model_path = os.path.expanduser(self.model_path) assert model_path.endswith('.h5'), 'Keras model must be a .h5 file.' self.yolo_model = load_model(model_path, compile=False) print('{} model, anchors, and classes loaded.'.format(model_path)) # Generate colors for drawing bounding boxes. hsv_tuples = [(x / len(self.class_names), 1., 1.) for x in range(len(self.class_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) random.seed(10101) # Fixed seed for consistent colors across runs. random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes. random.seed(None) # Reset seed to default. # Generate output tensor targets for filtered bounding boxes. self.input_image_shape = K.placeholder(shape=(2, )) boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors, len(self.class_names), self.input_image_shape, score_threshold=self.score, iou_threshold=self.iou) return boxes, scores, classes
Example 19
Project: Turku-neural-parser-pipeline Author: TurkuNLP File: tokenizer_mod.py License: Apache License 2.0 | 5 votes |
def __init__(self, args): """ Tokenizer model loading etc goes here """ from keras.models import load_model self.model = load_model(args.model) with open(args.vocab,'rb') as inf: self.vocab = pickle.load(inf) self.args=args
Example 20
Project: models Author: kipoi File: model.py License: MIT License | 5 votes |
def __init__(self, weights, postproc_mean, postproc_sd): """Simple keras model that also runs the postprocessin """ self.weights = weights self.model = load_model(weights) self.postproc_mean = postproc_mean self.postproc_sd = postproc_sd
Example 21
Project: models Author: kipoi File: model.py License: MIT License | 5 votes |
def __init__(self, model_file): self.model_file = model_file K.clear_session() # restart session self.model = load_model(model_file, compile=False) self.contrib_fns = {}
Example 22
Project: models Author: kipoi File: model.py License: MIT License | 5 votes |
def __init__(self, weights): self.nuc_dict = {'A':[1.0,0.0,0.0,0.0],'C':[0.0,1.0,0.0,0.0],'G':[0.0,0.0,1.0,0.0], 'U':[0.0,0.0,0.0,1.0], 'T':[0.0,0.0,0.0,1.0], 'N':[0.0,0.0,0.0,0.0], 'X':[1/4,1/4,1/4,1/4]} self.weights = weights self.model = load_model(weights, custom_objects={'FrameSliceLayer': FrameSliceLayer}) # One-hot encodes a particular sequence
Example 23
Project: Named-Entity-Recognition-with-Bidirectional-LSTM-CNNs Author: kamalkraj File: ner.py License: GNU General Public License v3.0 | 5 votes |
def load_models(self, loc=None): if not loc: loc = os.path.join(os.path.expanduser('~'), '.ner_model') self.model = load_model(os.path.join(loc,"model.h5")) # loading word2Idx self.word2Idx = np.load(os.path.join(loc,"word2Idx.npy")).item() # loading idx2Label self.idx2Label = np.load(os.path.join(loc,"idx2Label.npy")).item()
Example 24
Project: TradzQAI Author: kkuette File: DEEP.py License: Apache License 2.0 | 5 votes |
def __init__(self, model_path): self.model = load_model(model_path) self.graph = tf.get_default_graph()
Example 25
Project: steppy-toolkit Author: minerva-ml File: models.py License: MIT License | 5 votes |
def load(self, filepath): self.model = load_model(filepath, custom_objects={'AttentionWeightedAverage': AttentionWeightedAverage}) return self
Example 26
Project: python-esppy Author: sassoftware File: generators.py License: Apache License 2.0 | 5 votes |
def gen_wrap_str(self): if self.output_class: predict = 'predict_classes' else: predict = 'predict' wrap_str = ''' model = None def ks_score({0}): "Output: {1}" from keras.models import load_model import tensorflow as tf import numpy as np global model global graph # If it is called for the first time, restore the model if model is None: model = load_model('{2}') model._make_predict_function() graph = tf.get_default_graph() # make prediction {0}_wrap = np.array([{0}]) with graph.as_default(): {1} = model.{3}({0}_wrap)[0] if isinstance({1}, np.ndarray): {1} = {1}.tolist() else: {1} = {1}.item() return {1}'''.format(self.input_name, self.output_name, self.file, predict) return wrap_str
Example 27
Project: cnn-levelset Author: wiseodd File: localizer.py License: MIT License | 5 votes |
def load_model(self, model_path): return load_model(model_path, custom_objects=self.custom_objs)
Example 28
Project: CalibrationNN Author: Andres-Hernandez File: neural_network.py License: GNU General Public License v3.0 | 5 votes |
def __fromfile(self): file_name = self.file_name() + '.h5' if isfile(file_name): self.model = load_model(file_name) else: self.model = None
Example 29
Project: Jtyoui Author: jtyoui File: NER.py License: MIT License | 5 votes |
def predict_model(): x_test, original = vocab_test(test_path, vocab, length) ws = open(temp_path, mode='w', newline='\n') tags = dict(zip(tag.values(), tag.keys())) custom_objects = {'CRF': CRF, 'crf_loss': crf.crf_loss, 'crf_viterbi_accuracy': crf.crf_viterbi_accuracy} model = load_model(model_path, custom_objects=custom_objects) for question, tests in zip(original, x_test): raw = model.predict([[tests]])[0][-len(question):] result = [np.argmax(row) for row in raw] answer = tuple(map(lambda x: tags[x], result)) ma = map(lambda x: x[0] + '\t' + x[1] + '\n', zip(question, answer)) ws.writelines(ma) ws.write('\n') ws.flush() ws.close()
Example 30
Project: Jtyoui Author: jtyoui File: HandWritingRecognition.py License: MIT License | 5 votes |
def model_load(path='./model.h5'): model = load_model(path) return model