Python keras.models.model_from_json() Examples
The following are 30 code examples for showing how to use keras.models.model_from_json(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
keras.models
, or try the search function
.
Example 1
Project: reading-text-in-the-wild Author: mathDR File: use_charnet.py License: GNU General Public License v3.0 | 6 votes |
def __init__(self, architecture_file=None, weight_file=None, optimizer=None): # Generate mapping for softmax layer to characters output_str = '0123456789abcdefghijklmnopqrstuvwxyz ' self.output = [x for x in output_str] self.L = len(self.output) # Load model and saved weights from keras.models import model_from_json if architecture_file is None: self.model = model_from_json(open('char2_architecture.json').read()) else: self.model = model_from_json(open(architecture_file).read()) if weight_file is None: self.model.load_weights('char2_weights.h5') else: self.model.load_weights(weight_file) if optimizer is None: from keras.optimizers import SGD optimizer = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True) self.model.compile(loss='categorical_crossentropy', optimizer=optimizer)
Example 2
Project: deep-smoke-machine Author: CMU-CREATE-Lab File: keras_utils.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def load_model(json_path, weight_path, metrics=None, loss=None, optimizer=None, custom_objects=None, is_compile=True): with open(json_path, 'r') as f: model_json_string = json.load(f) model_json_dict = json.loads(model_json_string) model = model_from_json(model_json_string, custom_objects=custom_objects) model.load_weights(weight_path) if is_compile: if optimizer is None: optimizer = model_json_dict['optimizer']['name'] if loss is None: loss = model_json_dict['loss'] if metrics is None: model.compile(loss=loss, optimizer=optimizer) else: model.compile(loss=loss, optimizer=optimizer, metrics=metrics) return model
Example 3
Project: timeception Author: noureldien File: keras_utils.py License: GNU General Public License v3.0 | 6 votes |
def load_model(json_path, weight_path, metrics=None, loss=None, optimizer=None, custom_objects=None, is_compile=True): with open(json_path, 'r') as f: model_json_string = json.load(f) model_json_dict = json.loads(model_json_string) model = model_from_json(model_json_string, custom_objects=custom_objects) model.load_weights(weight_path) if is_compile: if optimizer is None: optimizer = model_json_dict['optimizer']['name'] if loss is None: loss = model_json_dict['loss'] if metrics is None: model.compile(loss=loss, optimizer=optimizer) else: model.compile(loss=loss, optimizer=optimizer, metrics=metrics) return model
Example 4
Project: Document-Classifier-LSTM Author: AlexGidiotis File: classifier.py License: MIT License | 6 votes |
def load_model(stamp): """ """ json_file = open(stamp+'.json', 'r') loaded_model_json = json_file.read() json_file.close() model = model_from_json(loaded_model_json, {'AttentionWithContext': AttentionWithContext}) model.load_weights(stamp+'.h5') print("Loaded model from disk") model.summary() adam = Adam(lr=0.001) model.compile(loss='binary_crossentropy', optimizer=adam, metrics=[f1_score]) return model
Example 5
Project: kits19.MIScnn Author: muellerdo File: neural_network.py License: GNU General Public License v3.0 | 6 votes |
def load(self, name): # Create model input path inpath_model = os.path.join(self.config["model_path"], name + ".model.json") inpath_weights = os.path.join(self.config["model_path"], name + ".weights.h5") # Load json and create model json_file = open(inpath_model, 'r') loaded_model_json = json_file.read() json_file.close() self.model = model_from_json(loaded_model_json) # Load weights into new model self.model.load_weights(inpath_weights) # Compile model self.model.compile(optimizer=Adam(lr=self.config["learninig_rate"]), loss=tversky_loss, metrics=self.metrics)
Example 6
Project: robotreviewer Author: ijmarshall File: punchline_extractor.py License: GNU General Public License v3.0 | 6 votes |
def __init__(self, architecture_path=None, weights_path=None): self.bc = None try: self.bc = BertClient() except: raise Exception("PunchlineExtractor: Cannot instantiate BertClient. Is it running???") # check if we're loading in a pre-trained model if architecture_path is not None: assert(weights_path is not None) with open(architecture_path) as model_arch: model_arch_str = model_arch.read() self.model = model_from_json(model_arch_str) self.model.load_weights(weights_path) else: self.build_model()
Example 7
Project: robotreviewer Author: ijmarshall File: punchline_extractor.py License: GNU General Public License v3.0 | 6 votes |
def __init__(self, architecture_path=None, weights_path=None): self.bc = None try: self.bc = BertClient() except: raise Exception("PunchlineExtractor: Cannot instantiate BertClient. Is it running???") # check if we're loading in a pre-trained model if architecture_path is not None: assert(weights_path is not None) with open(architecture_path) as model_arch: model_arch_str = model_arch.read() self.model = model_from_json(model_arch_str) self.model.load_weights(weights_path) else: self.build_model()
Example 8
Project: PSPNet-Keras-tensorflow Author: Vladkryvoruchko File: pspnet-video.py License: MIT License | 6 votes |
def __init__(self, nb_classes, resnet_layers, input_shape, weights): """Instanciate a PSPNet.""" self.input_shape = input_shape json_path = join("weights", "keras", weights + ".json") h5_path = join("weights", "keras", weights + ".h5") if isfile(json_path) and isfile(h5_path): print("Keras model & weights found, loading...") with open(json_path, 'r') as file_handle: self.model = model_from_json(file_handle.read()) self.model.load_weights(h5_path) else: print("No Keras model & weights found, import from npy weights.") self.model = layers.build_pspnet(nb_classes=nb_classes, resnet_layers=resnet_layers, input_shape=self.input_shape) self.set_npy_weights(weights)
Example 9
Project: PSPNet-Keras-tensorflow Author: Vladkryvoruchko File: pspnet.py License: MIT License | 6 votes |
def __init__(self, nb_classes, resnet_layers, input_shape, weights): self.input_shape = input_shape self.num_classes = nb_classes json_path = join("weights", "keras", weights + ".json") h5_path = join("weights", "keras", weights + ".h5") if 'pspnet' in weights: if os.path.isfile(json_path) and os.path.isfile(h5_path): print("Keras model & weights found, loading...") with CustomObjectScope({'Interp': layers.Interp}): with open(json_path) as file_handle: self.model = model_from_json(file_handle.read()) self.model.load_weights(h5_path) else: print("No Keras model & weights found, import from npy weights.") self.model = layers.build_pspnet(nb_classes=nb_classes, resnet_layers=resnet_layers, input_shape=self.input_shape) self.set_npy_weights(weights) else: print('Load pre-trained weights') self.model = load_model(weights)
Example 10
Project: GEM-Benchmark Author: palash1992 File: gcn.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def get_reconst_from_embed(self, embed, node_l=None, filesuffix=None): if filesuffix is None: if node_l is not None: return self._decoder.predict( embed, batch_size=self._n_batch)[:, node_l] else: return self._decoder.predict(embed, batch_size=self._n_batch) else: try: decoder = model_from_json( open('decoder_model_' + filesuffix + '.json').read() ) except: print('Error reading file: {0}. Cannot load previous model'.format('decoder_model_'+filesuffix+'.json')) exit() try: decoder.load_weights('decoder_weights_' + filesuffix + '.hdf5') except: print('Error reading file: {0}. Cannot load previous weights'.format('decoder_weights_'+filesuffix+'.hdf5')) exit() if node_l is not None: return decoder.predict(embed, batch_size=self._n_batch)[:, node_l] else: return decoder.predict(embed, batch_size=self._n_batch)
Example 11
Project: GEM-Benchmark Author: palash1992 File: vae.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def get_reconst_from_embed(self, embed, node_l=None, filesuffix=None): if filesuffix is None: if node_l is not None: return self._decoder.predict( embed, batch_size=self._n_batch )[:, node_l] else: return self._decoder.predict(embed, batch_size=self._n_batch) else: try: decoder = model_from_json( open('decoder_model_' + filesuffix + '.json').read()) except: print('Error reading file: {0}. Cannot load previous model'.format('decoder_model_'+filesuffix+'.json')) exit() try: decoder.load_weights('decoder_weights_'+filesuffix+'.hdf5') except: print('Error reading file: {0}. Cannot load previous weights'.format('decoder_weights_'+filesuffix+'.hdf5')) exit() if node_l is not None: return decoder.predict(embed, batch_size=self._n_batch)[:, node_l] else: return decoder.predict(embed, batch_size=self._n_batch)
Example 12
Project: GEM-Benchmark Author: palash1992 File: sdne.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def get_reconst_from_embed(self, embed, node_l=None, filesuffix=None): if filesuffix is None: if node_l is not None: return self._decoder.predict( embed, batch_size=self._n_batch)[:, node_l] else: return self._decoder.predict(embed, batch_size=self._n_batch) else: try: decoder = model_from_json( open('decoder_model_' + filesuffix + '.json').read() ) except: print('Error reading file: {0}. Cannot load previous model'.format('decoder_model_'+filesuffix+'.json')) exit() try: decoder.load_weights('decoder_weights_' + filesuffix + '.hdf5') except: print('Error reading file: {0}. Cannot load previous weights'.format('decoder_weights_'+filesuffix+'.hdf5')) exit() if node_l is not None: return decoder.predict(embed, batch_size=self._n_batch)[:, node_l] else: return decoder.predict(embed, batch_size=self._n_batch)
Example 13
Project: GEM-Benchmark Author: palash1992 File: ae_static.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def get_reconst_from_embed(self, embed, node_l=None, filesuffix=None): if filesuffix is None: if node_l is not None: return self._decoder.predict( embed, batch_size=self._n_batch )[:, node_l] else: return self._decoder.predict(embed, batch_size=self._n_batch) else: try: decoder = model_from_json( open('decoder_model_' + filesuffix + '.json').read()) except: print('Error reading file: {0}. Cannot load previous model'.format('decoder_model_'+filesuffix+'.json')) exit() try: decoder.load_weights('decoder_weights_'+filesuffix+'.hdf5') except: print('Error reading file: {0}. Cannot load previous weights'.format('decoder_weights_'+filesuffix+'.hdf5')) exit() if node_l is not None: return decoder.predict(embed, batch_size=self._n_batch)[:, node_l] else: return decoder.predict(embed, batch_size=self._n_batch)
Example 14
Project: sia-cog Author: tech-quantum File: pipelinecomponents.py License: MIT License | 6 votes |
def model_predict(X, pipeline): if model_type == "mlp": json_file = open(projectfolder + '/model.json', 'r') loaded_model_json = json_file.read() json_file.close() model = model_from_json(loaded_model_json) model.load_weights(projectfolder + "/weights.hdf5") model.compile(loss=pipeline['options']['loss'], optimizer=pipeline['options']['optimizer'], metrics=pipeline['options']['scoring']) if type(X) is pandas.DataFrame: X = X.values Y = model.predict(X) else: picklefile = projectfolder + "/model.out" with open(picklefile, "rb") as f: model = pickle.load(f) Y = model.predict(X) return Y
Example 15
Project: reversi_ai Author: andysalerno File: q_learning_agent.py License: MIT License | 6 votes |
def get_model(self, filename=None): """Given a filename, load that model file; otherwise, generate a new model.""" model = None if filename: info('attempting to load model {}'.format(filename)) try: model = model_from_json(open(filename).read()) except FileNotFoundError: print('could not load file {}'.format(filename)) quit() print('loaded model file {}'.format(filename)) else: print('no model file loaded, generating new model.') size = self.reversi.size ** 2 model = Sequential() model.add(Dense(HIDDEN_SIZE, activation='relu', input_dim=size)) # model.add(Dense(HIDDEN_SIZE, activation='relu')) model.add(Dense(size)) model.compile(loss='mse', optimizer=optimizer) return model
Example 16
Project: sonic_contest Author: flyyufelix File: atari_wrappers.py License: MIT License | 6 votes |
def __init__(self, env): """Warp frames to 84x84 as done in the Nature paper and later work.""" gym.ObservationWrapper.__init__(self, env) self.width = 84 self.height = 84 self.observation_space = spaces.Box(low=0, high=255, shape=(self.height, self.width, 1), dtype=np.uint8) #print("Load Keras Model!!!") # Load Keras model #self.json_name = './retro-movies/architecture_level_classifier_v5.json' #self.weight_name = './retro-movies/model_weights_level_classifier_v5.h5' #self.levelcls_model = model_from_json(open(self.json_name).read()) #self.levelcls_model.load_weights(self.weight_name, by_name=True) ##self.levelcls_model.load_weights(self.weight_name) #print("Done Loading Keras Model!!!") #self.mean_pixel = [103.939, 116.779, 123.68] #self.warmup = 1000 #self.interval = 500 #self.counter = 0 #self.num_inference = 0 #self.max_inference = 5 self.level_pred = []
Example 17
Project: Contrastive-Explanation-Method Author: IBM File: Utils.py License: Apache License 2.0 | 6 votes |
def load_AE(codec_prefix, print_summary=False): saveFilePrefix = "models/AE_codec/" + codec_prefix + "_" decoder_model_filename = saveFilePrefix + "decoder.json" decoder_weight_filename = saveFilePrefix + "decoder.h5" if not os.path.isfile(decoder_model_filename): raise Exception("The file for decoder model does not exist:{}".format(decoder_model_filename)) json_file = open(decoder_model_filename, 'r') decoder = model_from_json(json_file.read(), custom_objects={"tf": tf}) json_file.close() if not os.path.isfile(decoder_weight_filename): raise Exception("The file for decoder weights does not exist:{}".format(decoder_weight_filename)) decoder.load_weights(decoder_weight_filename) if print_summary: print("Decoder summaries") decoder.summary() return decoder
Example 18
Project: DLSCORE Author: sirimullalab File: NNScore2.01.02.py License: MIT License | 6 votes |
def getout(self): #get and denormalize output units for k in range(1,len(self.outno)+1): self.output[k] = self.deo[k][1] * self.units[self.outno[k]] + self.deo[k][2] #def dlscore(): # Load the model # with open("model.json", "r") as json_file: # loaded_model = model_from_json(json_file.read()) # Load weights # loaded_model.load_weights("model.h5") # Compile the model # loaded_model.compile( # loss='mean_squared_error', # optimizer=keras.optimizers.Adam(lr=0.001), # metrics=[metrics.MSE]) # return loaded_model
Example 19
Project: DLSCORE Author: sirimullalab File: NNScore2.01.03.py License: MIT License | 6 votes |
def getout(self): #get and denormalize output units for k in range(1,len(self.outno)+1): self.output[k] = self.deo[k][1] * self.units[self.outno[k]] + self.deo[k][2] #def dlscore(): # Load the model # with open("model.json", "r") as json_file: # loaded_model = model_from_json(json_file.read()) # Load weights # loaded_model.load_weights("model.h5") # Compile the model # loaded_model.compile( # loss='mean_squared_error', # optimizer=keras.optimizers.Adam(lr=0.001), # metrics=[metrics.MSE]) # return loaded_model
Example 20
Project: mljar-supervised Author: mljar File: nn.py License: MIT License | 6 votes |
def __init__(self, params): super(NeuralNetworkAlgorithm, self).__init__(params) self.library_version = keras.__version__ self.rounds = additional.get("one_step", 1) self.max_iters = additional.get("max_steps", 1) self.learner_params = { "dense_layers": params.get("dense_layers"), "dense_1_size": params.get("dense_1_size"), "dense_2_size": params.get("dense_2_size"), "dropout": params.get("dropout"), "learning_rate": params.get("learning_rate"), "momentum": params.get("momentum"), "decay": params.get("decay"), } self.model = None # we need input data shape to construct model if "model_architecture_json" in params: self.model = model_from_json( json.loads(params.get("model_architecture_json")) ) self.compile_model() logger.debug("NeuralNetworkAlgorithm __init__")
Example 21
Project: models Author: kipoi File: model.py License: MIT License | 5 votes |
def __init__(self, embd_arch, embd_weights, arch, weights): self.embd_model = model_from_json(open(embd_arch).read()) self.embd_model.load_weights(embd_weights) self.model = model_from_json(open(arch).read()) self.model.load_weights(weights)
Example 22
Project: keras-anomaly-detection Author: chen0040 File: feedforward.py License: MIT License | 5 votes |
def load_model(self, model_dir_path): config_file_path = FeedForwardAutoEncoder.get_config_file_path(model_dir_path) self.config = np.load(config_file_path).item() self.input_dim = self.config['input_dim'] self.threshold = self.config['threshold'] architecture_file_path = FeedForwardAutoEncoder.get_architecture_file_path(model_dir_path) self.model = model_from_json(open(architecture_file_path, 'r').read()) weight_file_path = FeedForwardAutoEncoder.get_weight_file_path(model_dir_path) self.model.load_weights(weight_file_path)
Example 23
Project: visual_turing_test-tutorial Author: mateuszmalinowski File: read_write.py License: MIT License | 5 votes |
def json_to_model(path): """ Loads a model from the json file. """ import json from keras.models import model_from_json with open(path, 'r') as f: json_model = json.load(f) model = model_from_json(json_model) return model
Example 24
Project: tartarus Author: sergiooramas File: predict.py License: MIT License | 5 votes |
def load_model(model_file): """Loads the model from the given model file.""" with open(model_file) as f: json_str = json.load(f) return model_from_json(json_str)
Example 25
Project: Keras-BiGAN Author: manicman1999 File: bigan.py License: MIT License | 5 votes |
def __init__(self, steps = 1, lr = 0.0001, decay = 0.00001): #Models self.D = None self.E = None self.G = None self.GE = None self.EE = None self.DM = None self.AM = None #Config self.LR = lr self.steps = steps self.beta = 0.999 #Init Models self.discriminator() self.generator() self.encoder() self.EE = model_from_json(self.E.to_json()) self.EE.set_weights(self.E.get_weights()) self.GE = model_from_json(self.G.to_json()) self.GE.set_weights(self.G.get_weights())
Example 26
Project: Keras-BiGAN Author: manicman1999 File: bigan.py License: MIT License | 5 votes |
def loadModel(self, name, num): file = open("Models/"+name+".json", 'r') json = file.read() file.close() mod = model_from_json(json) mod.load_weights("Models/"+name+"_"+str(num)+".h5") return mod
Example 27
Project: Keras-BiGAN Author: manicman1999 File: guess.py License: MIT License | 5 votes |
def loadModel(name, num): file = open("Models/"+name+".json", 'r') json = file.read() file.close() mod = model_from_json(json) mod.load_weights("Models/"+name+"_"+str(num)+".h5") return mod
Example 28
Project: blackbox-attacks Author: sunblaze-ucb File: mnist.py License: MIT License | 5 votes |
def load_model(model_path, type=1): try: with open(model_path+'.json', 'r') as f: json_string = f.read() model = model_from_json(json_string) except IOError: model = model_mnist(type=type) model.load_weights(model_path) return model
Example 29
Project: Document-Classifier-LSTM Author: AlexGidiotis File: hatt_classifier.py License: MIT License | 5 votes |
def load_model(stamp, multilabel=True): """ """ json_file = open(stamp+'.json', 'r') loaded_model_json = json_file.read() json_file.close() model = model_from_json(loaded_model_json) model.load_weights(stamp+'.h5') print("Loaded model from disk") model.summary() adam = Adam(lr=0.001) if multilabel: model.compile(loss='binary_crossentropy', optimizer=adam, metrics=[f1_score]) else: model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy']) return model
Example 30
Project: AIX360 Author: IBM File: test_CEM.py License: Apache License 2.0 | 5 votes |
def load_model(self, model_json_file, model_wt_file): # read model json file with open(model_json_file, 'r') as f: model = model_from_json(f.read()) # read model weights file model.load_weights(model_wt_file) return model