Python numpy.broadcast() Examples

The following are 30 code examples for showing how to use numpy.broadcast(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.

You may check out the related API usage on the sidebar.

You may also want to check out all available functions/classes of the module numpy , or try the search function .

Example 1
Project: Computable   Author: ktraunmueller   File: test_stats.py    License: MIT License 7 votes vote down vote up
def check_power_divergence(self, f_obs, f_exp, ddof, axis, lambda_,
                               expected_stat):
        f_obs = np.asarray(f_obs)
        if axis is None:
            num_obs = f_obs.size
        else:
            b = np.broadcast(f_obs, f_exp)
            num_obs = b.shape[axis]
        stat, p = stats.power_divergence(f_obs=f_obs, f_exp=f_exp, ddof=ddof,
                                         axis=axis, lambda_=lambda_)
        assert_allclose(stat, expected_stat)

        if lambda_ == 1 or lambda_ == "pearson":
            # Also test stats.chisquare.
            stat, p = stats.chisquare(f_obs=f_obs, f_exp=f_exp, ddof=ddof,
                                      axis=axis)
            assert_allclose(stat, expected_stat)

        ddof = np.asarray(ddof)
        expected_p = stats.chisqprob(expected_stat, num_obs - 1 - ddof)
        assert_allclose(p, expected_p) 
Example 2
Project: graphAttack   Author: jgolebiowski   File: coreNode.py    License: MIT License 7 votes vote down vote up
def broadcast_shape(shp1, shp2):
    """Broadcast the shape of those arrays

    Parameters
    ----------
    shp1 : tuple
        shape of array 1
    shp2 : tuple
        shape of array 2

    Returns
    -------
    tuple
        shape resulting from broadcasting two arrays using numpy rules

    Raises
    ------
    ValueError
        Arrays cannot be broadcasted
    """
    try:
        return np.broadcast(np.empty(shp1), np.empty(shp2)).shape
    except ValueError:
        raise ValueError("Arrays cannot be broadcasted - %s and %s " % (str(shp1), str(shp2))) 
Example 3
Project: recruit   Author: Frank-qlu   File: stride_tricks.py    License: Apache License 2.0 6 votes vote down vote up
def _broadcast_to(array, shape, subok, readonly):
    shape = tuple(shape) if np.iterable(shape) else (shape,)
    array = np.array(array, copy=False, subok=subok)
    if not shape and array.shape:
        raise ValueError('cannot broadcast a non-scalar to a scalar array')
    if any(size < 0 for size in shape):
        raise ValueError('all elements of broadcast shape must be non-'
                         'negative')
    needs_writeable = not readonly and array.flags.writeable
    extras = ['reduce_ok'] if needs_writeable else []
    op_flag = 'readwrite' if needs_writeable else 'readonly'
    it = np.nditer(
        (array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'] + extras,
        op_flags=[op_flag], itershape=shape, order='C')
    with it:
        # never really has writebackifcopy semantics
        broadcast = it.itviews[0]
    result = _maybe_view_as_subclass(array, broadcast)
    if needs_writeable and not result.flags.writeable:
        result.flags.writeable = True
    return result 
Example 4
Project: recruit   Author: Frank-qlu   File: stride_tricks.py    License: Apache License 2.0 6 votes vote down vote up
def _broadcast_shape(*args):
    """Returns the shape of the arrays that would result from broadcasting the
    supplied arrays against each other.
    """
    if not args:
        return ()
    # use the old-iterator because np.nditer does not handle size 0 arrays
    # consistently
    b = np.broadcast(*args[:32])
    # unfortunately, it cannot handle 32 or more arguments directly
    for pos in range(32, len(args), 31):
        # ironically, np.broadcast does not properly handle np.broadcast
        # objects (it treats them as scalars)
        # use broadcasting to avoid allocating the full array
        b = broadcast_to(0, b.shape)
        b = np.broadcast(b, *args[pos:(pos + 31)])
    return b.shape 
Example 5
Project: lambda-packs   Author: ryfeus   File: stride_tricks.py    License: MIT License 6 votes vote down vote up
def _broadcast_to(array, shape, subok, readonly):
    shape = tuple(shape) if np.iterable(shape) else (shape,)
    array = np.array(array, copy=False, subok=subok)
    if not shape and array.shape:
        raise ValueError('cannot broadcast a non-scalar to a scalar array')
    if any(size < 0 for size in shape):
        raise ValueError('all elements of broadcast shape must be non-'
                         'negative')
    needs_writeable = not readonly and array.flags.writeable
    extras = ['reduce_ok'] if needs_writeable else []
    op_flag = 'readwrite' if needs_writeable else 'readonly'
    it = np.nditer(
        (array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'] + extras,
        op_flags=[op_flag], itershape=shape, order='C')
    with it:
        # never really has writebackifcopy semantics
        broadcast = it.itviews[0]
    result = _maybe_view_as_subclass(array, broadcast)
    if needs_writeable and not result.flags.writeable:
        result.flags.writeable = True
    return result 
Example 6
Project: lambda-packs   Author: ryfeus   File: stride_tricks.py    License: MIT License 6 votes vote down vote up
def _broadcast_shape(*args):
    """Returns the shape of the arrays that would result from broadcasting the
    supplied arrays against each other.
    """
    if not args:
        return ()
    # use the old-iterator because np.nditer does not handle size 0 arrays
    # consistently
    b = np.broadcast(*args[:32])
    # unfortunately, it cannot handle 32 or more arguments directly
    for pos in range(32, len(args), 31):
        # ironically, np.broadcast does not properly handle np.broadcast
        # objects (it treats them as scalars)
        # use broadcasting to avoid allocating the full array
        b = broadcast_to(0, b.shape)
        b = np.broadcast(b, *args[pos:(pos + 31)])
    return b.shape 
Example 7
Project: lambda-packs   Author: ryfeus   File: stride_tricks.py    License: MIT License 6 votes vote down vote up
def _broadcast_to(array, shape, subok, readonly):
    shape = tuple(shape) if np.iterable(shape) else (shape,)
    array = np.array(array, copy=False, subok=subok)
    if not shape and array.shape:
        raise ValueError('cannot broadcast a non-scalar to a scalar array')
    if any(size < 0 for size in shape):
        raise ValueError('all elements of broadcast shape must be non-'
                         'negative')
    needs_writeable = not readonly and array.flags.writeable
    extras = ['reduce_ok'] if needs_writeable else []
    op_flag = 'readwrite' if needs_writeable else 'readonly'
    broadcast = np.nditer(
        (array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'] + extras,
        op_flags=[op_flag], itershape=shape, order='C').itviews[0]
    result = _maybe_view_as_subclass(array, broadcast)
    if needs_writeable and not result.flags.writeable:
        result.flags.writeable = True
    return result 
Example 8
Project: auto-alt-text-lambda-api   Author: abhisuri97   File: stride_tricks.py    License: MIT License 6 votes vote down vote up
def _broadcast_to(array, shape, subok, readonly):
    shape = tuple(shape) if np.iterable(shape) else (shape,)
    array = np.array(array, copy=False, subok=subok)
    if not shape and array.shape:
        raise ValueError('cannot broadcast a non-scalar to a scalar array')
    if any(size < 0 for size in shape):
        raise ValueError('all elements of broadcast shape must be non-'
                         'negative')
    needs_writeable = not readonly and array.flags.writeable
    extras = ['reduce_ok'] if needs_writeable else []
    op_flag = 'readwrite' if needs_writeable else 'readonly'
    broadcast = np.nditer(
        (array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'] + extras,
        op_flags=[op_flag], itershape=shape, order='C').itviews[0]
    result = _maybe_view_as_subclass(array, broadcast)
    if needs_writeable and not result.flags.writeable:
        result.flags.writeable = True
    return result 
Example 9
Project: auto-alt-text-lambda-api   Author: abhisuri97   File: stride_tricks.py    License: MIT License 6 votes vote down vote up
def _broadcast_shape(*args):
    """Returns the shape of the ararys that would result from broadcasting the
    supplied arrays against each other.
    """
    if not args:
        raise ValueError('must provide at least one argument')
    # use the old-iterator because np.nditer does not handle size 0 arrays
    # consistently
    b = np.broadcast(*args[:32])
    # unfortunately, it cannot handle 32 or more arguments directly
    for pos in range(32, len(args), 31):
        # ironically, np.broadcast does not properly handle np.broadcast
        # objects (it treats them as scalars)
        # use broadcasting to avoid allocating the full array
        b = broadcast_to(0, b.shape)
        b = np.broadcast(b, *args[pos:(pos + 31)])
    return b.shape 
Example 10
Project: vnpy_crypto   Author: birforce   File: stride_tricks.py    License: MIT License 6 votes vote down vote up
def _broadcast_to(array, shape, subok, readonly):
    shape = tuple(shape) if np.iterable(shape) else (shape,)
    array = np.array(array, copy=False, subok=subok)
    if not shape and array.shape:
        raise ValueError('cannot broadcast a non-scalar to a scalar array')
    if any(size < 0 for size in shape):
        raise ValueError('all elements of broadcast shape must be non-'
                         'negative')
    needs_writeable = not readonly and array.flags.writeable
    extras = ['reduce_ok'] if needs_writeable else []
    op_flag = 'readwrite' if needs_writeable else 'readonly'
    broadcast = np.nditer(
        (array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'] + extras,
        op_flags=[op_flag], itershape=shape, order='C').itviews[0]
    result = _maybe_view_as_subclass(array, broadcast)
    if needs_writeable and not result.flags.writeable:
        result.flags.writeable = True
    return result 
Example 11
Project: vnpy_crypto   Author: birforce   File: stride_tricks.py    License: MIT License 6 votes vote down vote up
def _broadcast_shape(*args):
    """Returns the shape of the arrays that would result from broadcasting the
    supplied arrays against each other.
    """
    if not args:
        return ()
    # use the old-iterator because np.nditer does not handle size 0 arrays
    # consistently
    b = np.broadcast(*args[:32])
    # unfortunately, it cannot handle 32 or more arguments directly
    for pos in range(32, len(args), 31):
        # ironically, np.broadcast does not properly handle np.broadcast
        # objects (it treats them as scalars)
        # use broadcasting to avoid allocating the full array
        b = broadcast_to(0, b.shape)
        b = np.broadcast(b, *args[pos:(pos + 31)])
    return b.shape 
Example 12
Project: funsor   Author: pyro-ppl   File: util.py    License: Apache License 2.0 6 votes vote down vote up
def broadcast_shape(*shapes, **kwargs):
    """
    Similar to ``np.broadcast()`` but for shapes.
    Equivalent to ``np.broadcast(*map(np.empty, shapes)).shape``.
    :param tuple shapes: shapes of tensors.
    :param bool strict: whether to use extend-but-not-resize broadcasting.
    :returns: broadcasted shape
    :rtype: tuple
    :raises: ValueError
    """
    strict = kwargs.pop('strict', False)
    reversed_shape = []
    for shape in shapes:
        for i, size in enumerate(reversed(shape)):
            if i >= len(reversed_shape):
                reversed_shape.append(size)
            elif reversed_shape[i] == 1 and not strict:
                reversed_shape[i] = size
            elif reversed_shape[i] != size and (size != 1 or strict):
                raise ValueError('shape mismatch: objects cannot be broadcast to a single shape: {}'.format(
                    ' vs '.join(map(str, shapes))))
    return tuple(reversed(reversed_shape)) 
Example 13
Project: thedoctor   Author: hhuuggoo   File: validators.py    License: BSD 2-Clause "Simplified" License 6 votes vote down vote up
def broadcastable(*names):
    """returns a function - this function takes a dict of args
    (should be used in _all validator)
    asserts that every array in that list is broadcastable
    """
    # todo - do we check whether these are numpy objs first?
    # cause you can write numpy funcs on lists sometimes
    import numpy as np

    def _broadcastable(all_args):
        arrs = [all_args[x] for x in names]
        try:
            np.broadcast(*arrs)
        except ValueError:
            raise ValidationError(
                "Cannot broadcast %s with shapes %s", names,
                [getattr(x, 'shape', 'no shape') for x in arrs])
    return _broadcastable 
Example 14
Project: Mastering-Elasticsearch-7.0   Author: PacktPublishing   File: stride_tricks.py    License: MIT License 6 votes vote down vote up
def _broadcast_to(array, shape, subok, readonly):
    shape = tuple(shape) if np.iterable(shape) else (shape,)
    array = np.array(array, copy=False, subok=subok)
    if not shape and array.shape:
        raise ValueError('cannot broadcast a non-scalar to a scalar array')
    if any(size < 0 for size in shape):
        raise ValueError('all elements of broadcast shape must be non-'
                         'negative')
    needs_writeable = not readonly and array.flags.writeable
    extras = ['reduce_ok'] if needs_writeable else []
    op_flag = 'readwrite' if needs_writeable else 'readonly'
    it = np.nditer(
        (array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'] + extras,
        op_flags=[op_flag], itershape=shape, order='C')
    with it:
        # never really has writebackifcopy semantics
        broadcast = it.itviews[0]
    result = _maybe_view_as_subclass(array, broadcast)
    if needs_writeable and not result.flags.writeable:
        result.flags.writeable = True
    return result 
Example 15
Project: Mastering-Elasticsearch-7.0   Author: PacktPublishing   File: stride_tricks.py    License: MIT License 6 votes vote down vote up
def _broadcast_shape(*args):
    """Returns the shape of the arrays that would result from broadcasting the
    supplied arrays against each other.
    """
    if not args:
        return ()
    # use the old-iterator because np.nditer does not handle size 0 arrays
    # consistently
    b = np.broadcast(*args[:32])
    # unfortunately, it cannot handle 32 or more arguments directly
    for pos in range(32, len(args), 31):
        # ironically, np.broadcast does not properly handle np.broadcast
        # objects (it treats them as scalars)
        # use broadcasting to avoid allocating the full array
        b = broadcast_to(0, b.shape)
        b = np.broadcast(b, *args[pos:(pos + 31)])
    return b.shape 
Example 16
Project: chainer   Author: chainer   File: type_check.py    License: MIT License 6 votes vote down vote up
def expect_broadcast_shapes(*shape_types):
    """Checks if shapes can be broadcasted together.

    Args:
        shapes_types: Type-checked shapes of the arrays to broadcast.

    """
    shapes = [eval(s) for s in shape_types]
    error = None
    try:
        # simulate the shape calculation using zero-sized arrays
        numpy.broadcast(*[numpy.empty(s + (0,)) for s in shapes])
    except ValueError:
        msgs = ['cannot broadcast inputs of the following shapes:']
        for shape_type, shape in six.moves.zip(shape_types, shapes):
            msgs.append('{} = {}'.format(shape_type, shape))
        error = InvalidType('', '', msg='\n'.join(msgs))
    if error is not None:
        raise error 
Example 17
Project: GraphicDesignPatternByPython   Author: Relph1119   File: stride_tricks.py    License: MIT License 6 votes vote down vote up
def _broadcast_to(array, shape, subok, readonly):
    shape = tuple(shape) if np.iterable(shape) else (shape,)
    array = np.array(array, copy=False, subok=subok)
    if not shape and array.shape:
        raise ValueError('cannot broadcast a non-scalar to a scalar array')
    if any(size < 0 for size in shape):
        raise ValueError('all elements of broadcast shape must be non-'
                         'negative')
    needs_writeable = not readonly and array.flags.writeable
    extras = ['reduce_ok'] if needs_writeable else []
    op_flag = 'readwrite' if needs_writeable else 'readonly'
    it = np.nditer(
        (array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'] + extras,
        op_flags=[op_flag], itershape=shape, order='C')
    with it:
        # never really has writebackifcopy semantics
        broadcast = it.itviews[0]
    result = _maybe_view_as_subclass(array, broadcast)
    if needs_writeable and not result.flags.writeable:
        result.flags.writeable = True
    return result 
Example 18
Project: GraphicDesignPatternByPython   Author: Relph1119   File: stride_tricks.py    License: MIT License 6 votes vote down vote up
def _broadcast_shape(*args):
    """Returns the shape of the arrays that would result from broadcasting the
    supplied arrays against each other.
    """
    if not args:
        return ()
    # use the old-iterator because np.nditer does not handle size 0 arrays
    # consistently
    b = np.broadcast(*args[:32])
    # unfortunately, it cannot handle 32 or more arguments directly
    for pos in range(32, len(args), 31):
        # ironically, np.broadcast does not properly handle np.broadcast
        # objects (it treats them as scalars)
        # use broadcasting to avoid allocating the full array
        b = broadcast_to(0, b.shape)
        b = np.broadcast(b, *args[pos:(pos + 31)])
    return b.shape 
Example 19
def _broadcast_to(array, shape, subok, readonly):
    shape = tuple(shape) if np.iterable(shape) else (shape,)
    array = np.array(array, copy=False, subok=subok)
    if not shape and array.shape:
        raise ValueError('cannot broadcast a non-scalar to a scalar array')
    if any(size < 0 for size in shape):
        raise ValueError('all elements of broadcast shape must be non-'
                         'negative')
    needs_writeable = not readonly and array.flags.writeable
    extras = ['reduce_ok'] if needs_writeable else []
    op_flag = 'readwrite' if needs_writeable else 'readonly'
    it = np.nditer(
        (array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'] + extras,
        op_flags=[op_flag], itershape=shape, order='C')
    with it:
        # never really has writebackifcopy semantics
        broadcast = it.itviews[0]
    result = _maybe_view_as_subclass(array, broadcast)
    if needs_writeable and not result.flags.writeable:
        result.flags.writeable = True
    return result 
Example 20
Project: recruit   Author: Frank-qlu   File: stride_tricks.py    License: Apache License 2.0 5 votes vote down vote up
def broadcast_to(array, shape, subok=False):
    """Broadcast an array to a new shape.

    Parameters
    ----------
    array : array_like
        The array to broadcast.
    shape : tuple
        The shape of the desired array.
    subok : bool, optional
        If True, then sub-classes will be passed-through, otherwise
        the returned array will be forced to be a base-class array (default).

    Returns
    -------
    broadcast : array
        A readonly view on the original array with the given shape. It is
        typically not contiguous. Furthermore, more than one element of a
        broadcasted array may refer to a single memory location.

    Raises
    ------
    ValueError
        If the array is not compatible with the new shape according to NumPy's
        broadcasting rules.

    Notes
    -----
    .. versionadded:: 1.10.0

    Examples
    --------
    >>> x = np.array([1, 2, 3])
    >>> np.broadcast_to(x, (3, 3))
    array([[1, 2, 3],
           [1, 2, 3],
           [1, 2, 3]])
    """
    return _broadcast_to(array, shape, subok=subok, readonly=True) 
Example 21
Project: recruit   Author: Frank-qlu   File: test_indexing.py    License: Apache License 2.0 5 votes vote down vote up
def test_boolean_assignment_value_mismatch(self):
        # A boolean assignment should fail when the shape of the values
        # cannot be broadcast to the subscription. (see also gh-3458)
        a = np.arange(4)

        def f(a, v):
            a[a > -1] = v

        assert_raises(ValueError, f, a, [])
        assert_raises(ValueError, f, a, [1, 2, 3])
        assert_raises(ValueError, f, a[:1], [1, 2, 3]) 
Example 22
Project: recruit   Author: Frank-qlu   File: test_indexing.py    License: Apache License 2.0 5 votes vote down vote up
def _compare_index_result(self, arr, index, mimic_get, no_copy):
        """Compare mimicked result to indexing result.
        """
        arr = arr.copy()
        indexed_arr = arr[index]
        assert_array_equal(indexed_arr, mimic_get)
        # Check if we got a view, unless its a 0-sized or 0-d array.
        # (then its not a view, and that does not matter)
        if indexed_arr.size != 0 and indexed_arr.ndim != 0:
            assert_(np.may_share_memory(indexed_arr, arr) == no_copy)
            # Check reference count of the original array
            if HAS_REFCOUNT:
                if no_copy:
                    # refcount increases by one:
                    assert_equal(sys.getrefcount(arr), 3)
                else:
                    assert_equal(sys.getrefcount(arr), 2)

        # Test non-broadcast setitem:
        b = arr.copy()
        b[index] = mimic_get + 1000
        if b.size == 0:
            return  # nothing to compare here...
        if no_copy and indexed_arr.ndim != 0:
            # change indexed_arr in-place to manipulate original:
            indexed_arr += 1000
            assert_array_equal(arr, b)
            return
        # Use the fact that the array is originally an arange:
        arr.flat[indexed_arr.ravel()] += 1000
        assert_array_equal(arr, b) 
Example 23
Project: recruit   Author: Frank-qlu   File: test_numeric.py    License: Apache License 2.0 5 votes vote down vote up
def test_broadcast_in_args(self):
        # gh-5881
        arrs = [np.empty((6, 7)), np.empty((5, 6, 1)), np.empty((7,)),
                np.empty((5, 1, 7))]
        mits = [np.broadcast(*arrs),
                np.broadcast(np.broadcast(*arrs[:2]), np.broadcast(*arrs[2:])),
                np.broadcast(arrs[0], np.broadcast(*arrs[1:-1]), arrs[-1])]
        for mit in mits:
            assert_equal(mit.shape, (5, 6, 7))
            assert_equal(mit.ndim, 3)
            assert_equal(mit.nd, 3)
            assert_equal(mit.numiter, 4)
            for a, ia in zip(arrs, mit.iters):
                assert_(a is ia.base) 
Example 24
Project: recruit   Author: Frank-qlu   File: test_numeric.py    License: Apache License 2.0 5 votes vote down vote up
def test_broadcast_single_arg(self):
        # gh-6899
        arrs = [np.empty((5, 6, 7))]
        mit = np.broadcast(*arrs)
        assert_equal(mit.shape, (5, 6, 7))
        assert_equal(mit.ndim, 3)
        assert_equal(mit.nd, 3)
        assert_equal(mit.numiter, 1)
        assert_(arrs[0] is mit.iters[0].base) 
Example 25
Project: recruit   Author: Frank-qlu   File: test_numeric.py    License: Apache License 2.0 5 votes vote down vote up
def test_number_of_arguments(self):
        arr = np.empty((5,))
        for j in range(35):
            arrs = [arr] * j
            if j < 1 or j > 32:
                assert_raises(ValueError, np.broadcast, *arrs)
            else:
                mit = np.broadcast(*arrs)
                assert_equal(mit.numiter, j) 
Example 26
Project: typhon   Author: atmtools   File: geodesy.py    License: MIT License 5 votes vote down vote up
def _broadcast(*args):
    """ Similar to broadcast_arrays in numpy but with minimum output size (1,)
    """
    shape = np.broadcast(*args).shape
    if not shape:
        shape = (1,)
    return [np.broadcast_to(array, shape) for array in args] 
Example 27
Project: formulas   Author: vinci1it2000   File: __init__.py    License: European Union Public License 1.1 5 votes vote down vote up
def wrap_ufunc(
        func, input_parser=lambda *a: map(float, a), check_error=get_error,
        args_parser=lambda *a: map(replace_empty, a), otype=Array,
        ranges=False, return_func=lambda res, *args: res, check_nan=True, **kw):
    """Helps call a numpy universal function (ufunc)."""

    def safe_eval(*vals):
        try:
            r = check_error(*vals) or func(*input_parser(*vals))
            if check_nan and not isinstance(r, (XlError, str)):
                r = (not np.isfinite(r)) and Error.errors['#NUM!'] or r
        except (ValueError, TypeError):
            r = Error.errors['#VALUE!']
        return r

    kw['otypes'] = kw.get('otypes', [object])

    # noinspection PyUnusedLocal
    def wrapper(*args, **kwargs):
        try:
            args = tuple(args_parser(*args))
            with np.errstate(divide='ignore', invalid='ignore'):
                res = np.vectorize(safe_eval, **kw)(*args)
            try:
                res = res.view(otype)
            except AttributeError:
                res = np.asarray([[res]], object).view(otype)
            return return_func(res, *args)
        except ValueError as ex:
            try:
                np.broadcast(*args)
            except ValueError:
                raise BroadcastError()
            raise ex

    return wrap_func(functools.update_wrapper(wrapper, func), ranges=ranges) 
Example 28
Project: lambda-packs   Author: ryfeus   File: stride_tricks.py    License: MIT License 5 votes vote down vote up
def broadcast_to(array, shape, subok=False):
    """Broadcast an array to a new shape.

    Parameters
    ----------
    array : array_like
        The array to broadcast.
    shape : tuple
        The shape of the desired array.
    subok : bool, optional
        If True, then sub-classes will be passed-through, otherwise
        the returned array will be forced to be a base-class array (default).

    Returns
    -------
    broadcast : array
        A readonly view on the original array with the given shape. It is
        typically not contiguous. Furthermore, more than one element of a
        broadcasted array may refer to a single memory location.

    Raises
    ------
    ValueError
        If the array is not compatible with the new shape according to NumPy's
        broadcasting rules.

    Notes
    -----
    .. versionadded:: 1.10.0

    Examples
    --------
    >>> x = np.array([1, 2, 3])
    >>> np.broadcast_to(x, (3, 3))
    array([[1, 2, 3],
           [1, 2, 3],
           [1, 2, 3]])
    """
    return _broadcast_to(array, shape, subok=subok, readonly=True) 
Example 29
Project: lambda-packs   Author: ryfeus   File: stride_tricks.py    License: MIT License 5 votes vote down vote up
def broadcast_to(array, shape, subok=False):
    """Broadcast an array to a new shape.

    Parameters
    ----------
    array : array_like
        The array to broadcast.
    shape : tuple
        The shape of the desired array.
    subok : bool, optional
        If True, then sub-classes will be passed-through, otherwise
        the returned array will be forced to be a base-class array (default).

    Returns
    -------
    broadcast : array
        A readonly view on the original array with the given shape. It is
        typically not contiguous. Furthermore, more than one element of a
        broadcasted array may refer to a single memory location.

    Raises
    ------
    ValueError
        If the array is not compatible with the new shape according to NumPy's
        broadcasting rules.

    Notes
    -----
    .. versionadded:: 1.10.0

    Examples
    --------
    >>> x = np.array([1, 2, 3])
    >>> np.broadcast_to(x, (3, 3))
    array([[1, 2, 3],
           [1, 2, 3],
           [1, 2, 3]])
    """
    return _broadcast_to(array, shape, subok=subok, readonly=True) 
Example 30
Project: auto-alt-text-lambda-api   Author: abhisuri97   File: stride_tricks.py    License: MIT License 5 votes vote down vote up
def broadcast_to(array, shape, subok=False):
    """Broadcast an array to a new shape.

    Parameters
    ----------
    array : array_like
        The array to broadcast.
    shape : tuple
        The shape of the desired array.
    subok : bool, optional
        If True, then sub-classes will be passed-through, otherwise
        the returned array will be forced to be a base-class array (default).

    Returns
    -------
    broadcast : array
        A readonly view on the original array with the given shape. It is
        typically not contiguous. Furthermore, more than one element of a
        broadcasted array may refer to a single memory location.

    Raises
    ------
    ValueError
        If the array is not compatible with the new shape according to NumPy's
        broadcasting rules.

    Notes
    -----
    .. versionadded:: 1.10.0

    Examples
    --------
    >>> x = np.array([1, 2, 3])
    >>> np.broadcast_to(x, (3, 3))
    array([[1, 2, 3],
           [1, 2, 3],
           [1, 2, 3]])
    """
    return _broadcast_to(array, shape, subok=subok, readonly=True)