Python numpy.floor_divide() Examples
The following are 30 code examples for showing how to use numpy.floor_divide(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: refractiveindex.info-scripts Author: polyanskiy File: Kaiser 1962 - CaF2.py License: GNU General Public License v3.0 | 6 votes |
def w(w_max, w_min, step): linspace_lower = (np.floor_divide(w_min, step)+1)*step N = np.floor_divide(w_max-w_min, step) linspace_upper = linspace_lower + N*step w = np.linspace(linspace_lower, linspace_upper, int(N)+1) if not np.isclose(w[0], w_min, atol=step/5.): w = np.concatenate((np.array([w_min]), w)) if not np.isclose(w[-1], w_max, atol=step/5.): w = np.concatenate((w,np.array([w_max]))) return w, len(w) # Compute dielectric function using Lorentzian model. # Units of w and ResFreq must match and must be directly proportional to angular frequency. All other parameters are unitless.
Example 2
Project: refractiveindex.info-scripts Author: polyanskiy File: Tsuda 2018 - PMMA (BB model).py License: GNU General Public License v3.0 | 6 votes |
def w(w_max, w_min, step): linspace_lower = (np.floor_divide(w_min, step)+1)*step N = np.floor_divide(w_max-w_min, step) linspace_upper = linspace_lower + N*step w = np.linspace(linspace_lower, linspace_upper, int(N)+1) if not np.isclose(w[0], w_min, atol=step/5.): w = np.concatenate((np.array([w_min]), w)) if not np.isclose(w[-1], w_max, atol=step/5.): w = np.concatenate((w,np.array([w_max]))) return w, len(w) # Compute dielectric function using Brendel-Bormann (aka Gaussian or Gaussian-convoluted Drude–Lorentz) model. # Units of w and ResFreq must match and must be directly proportional to angular frequency. All other parameters are unitless.
Example 3
Project: refractiveindex.info-scripts Author: polyanskiy File: Zhang 1998 - Kapton.py License: GNU General Public License v3.0 | 6 votes |
def w(w_max, w_min, step): linspace_lower = (np.floor_divide(w_min, step)+1)*step N = np.floor_divide(w_max-w_min, step) linspace_upper = linspace_lower + N*step w = np.linspace(linspace_lower, linspace_upper, int(N)+1) if not np.isclose(w[0], w_min, atol=step/5.): w = np.concatenate((np.array([w_min]), w)) if not np.isclose(w[-1], w_max, atol=step/5.): w = np.concatenate((w,np.array([w_max]))) return w, len(w) # Compute dielectric function using Lorentzian model. # Units of w and ResFreq must match and must be directly proportional to angular frequency. All other parameters are unitless.
Example 4
Project: refractiveindex.info-scripts Author: polyanskiy File: Tsuda 2018 - PMMA (LD model).py License: GNU General Public License v3.0 | 6 votes |
def w(w_max, w_min, step): linspace_lower = (np.floor_divide(w_min, step)+1)*step N = np.floor_divide(w_max-w_min, step) linspace_upper = linspace_lower + N*step w = np.linspace(linspace_lower, linspace_upper, int(N)+1) if not np.isclose(w[0], w_min, atol=step/5.): w = np.concatenate((np.array([w_min]), w)) if not np.isclose(w[-1], w_max, atol=step/5.): w = np.concatenate((w,np.array([w_max]))) return w, len(w) # Compute dielectric function using Lorentzian model. # Units of w and ResFreq must match and must be directly proportional to angular frequency. All other parameters are unitless.
Example 5
Project: refractiveindex.info-scripts Author: polyanskiy File: Kaiser 1962 - BaF2.py License: GNU General Public License v3.0 | 6 votes |
def w(w_max, w_min, step): linspace_lower = (np.floor_divide(w_min, step)+1)*step N = np.floor_divide(w_max-w_min, step) linspace_upper = linspace_lower + N*step w = np.linspace(linspace_lower, linspace_upper, int(N)+1) if not np.isclose(w[0], w_min, atol=step/5.): w = np.concatenate((np.array([w_min]), w)) if not np.isclose(w[-1], w_max, atol=step/5.): w = np.concatenate((w,np.array([w_max]))) return w, len(w) # Compute dielectric function using Lorentzian model. # Units of w and ResFreq must match and must be directly proportional to angular frequency. All other parameters are unitless.
Example 6
Project: recruit Author: Frank-qlu File: test_ufunc.py License: Apache License 2.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example 7
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 8
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_umath.py License: MIT License | 6 votes |
def test_remainder_basic(self): dt = np.typecodes['AllInteger'] + np.typecodes['Float'] for dt1, dt2 in itertools.product(dt, dt): for sg1, sg2 in itertools.product((+1, -1), (+1, -1)): if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']: continue if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']: continue fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s' msg = fmt % (dt1, dt2, sg1, sg2) a = np.array(sg1*71, dtype=dt1) b = np.array(sg2*19, dtype=dt2) div = np.floor_divide(a, b) rem = np.remainder(a, b) assert_equal(div*b + rem, a, err_msg=msg) if sg2 == -1: assert_(b < rem <= 0, msg) else: assert_(b > rem >= 0, msg)
Example 9
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_umath.py License: MIT License | 6 votes |
def test_float_remainder_exact(self): # test that float results are exact for small integers. This also # holds for the same integers scaled by powers of two. nlst = list(range(-127, 0)) plst = list(range(1, 128)) dividend = nlst + [0] + plst divisor = nlst + plst arg = list(itertools.product(dividend, divisor)) tgt = list(divmod(*t) for t in arg) a, b = np.array(arg, dtype=int).T # convert exact integer results from Python to float so that # signed zero can be used, it is checked. tgtdiv, tgtrem = np.array(tgt, dtype=float).T tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv) tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem) for dt in np.typecodes['Float']: msg = 'dtype: %s' % (dt,) fa = a.astype(dt) fb = b.astype(dt) div = np.floor_divide(fa, fb) rem = np.remainder(fa, fb) assert_equal(div, tgtdiv, err_msg=msg) assert_equal(rem, tgtrem, err_msg=msg)
Example 10
Project: vnpy_crypto Author: birforce File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 11
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example 12
Project: MONAI Author: Project-MONAI File: array.py License: Apache License 2.0 | 6 votes |
def __init__(self, roi_center=None, roi_size=None, roi_start=None, roi_end=None): """ Args: roi_center (list or tuple): voxel coordinates for center of the crop ROI. roi_size (list or tuple): size of the crop ROI. roi_start (list or tuple): voxel coordinates for start of the crop ROI. roi_end (list or tuple): voxel coordinates for end of the crop ROI. """ if roi_center is not None and roi_size is not None: roi_center = np.asarray(roi_center, dtype=np.uint16) roi_size = np.asarray(roi_size, dtype=np.uint16) self.roi_start = np.subtract(roi_center, np.floor_divide(roi_size, 2)) self.roi_end = np.add(self.roi_start, roi_size) else: assert roi_start is not None and roi_end is not None, "roi_start and roi_end must be provided." self.roi_start = np.asarray(roi_start, dtype=np.uint16) self.roi_end = np.asarray(roi_end, dtype=np.uint16) assert np.all(self.roi_start >= 0), "all elements of roi_start must be greater than or equal to 0." assert np.all(self.roi_end > 0), "all elements of roi_end must be positive." assert np.all(self.roi_end >= self.roi_start), "invalid roi range."
Example 13
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 14
Project: deep_image_model Author: tobegit3hub File: cwise_ops_test.py License: Apache License 2.0 | 6 votes |
def testFloatBasic(self): x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float32) y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(x, y, np.add, tf.add, also_compare_variables=True) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y + 0.1, np.true_divide, tf.truediv) self._compareBoth(x, y + 0.1, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y + 0.1, np.true_divide, _TRUEDIV) self._compareBoth(x, y + 0.1, np.floor_divide, _FLOORDIV) try: from scipy import special # pylint: disable=g-import-not-at-top a_pos_small = np.linspace(0.1, 2, 15).reshape(1, 3, 5).astype(np.float32) x_pos_small = np.linspace(0.1, 10, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(a_pos_small, x_pos_small, special.gammainc, tf.igamma) self._compareBoth(a_pos_small, x_pos_small, special.gammaincc, tf.igammac) # Need x > 1 self._compareBoth(x_pos_small + 1, a_pos_small, special.zeta, tf.zeta) n_small = np.arange(0, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(n_small, x_pos_small, special.polygamma, tf.polygamma) except ImportError as e: tf.logging.warn("Cannot test special functions: %s" % str(e))
Example 15
Project: deep_image_model Author: tobegit3hub File: cwise_ops_test.py License: Apache License 2.0 | 6 votes |
def testDoubleBasic(self): x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float64) y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float64) self._compareBoth(x, y, np.add, tf.add) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y + 0.1, np.true_divide, tf.truediv) self._compareBoth(x, y + 0.1, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y + 0.1, np.true_divide, _TRUEDIV) self._compareBoth(x, y + 0.1, np.floor_divide, _FLOORDIV) try: from scipy import special # pylint: disable=g-import-not-at-top a_pos_small = np.linspace(0.1, 2, 15).reshape(1, 3, 5).astype(np.float32) x_pos_small = np.linspace(0.1, 10, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(a_pos_small, x_pos_small, special.gammainc, tf.igamma) self._compareBoth(a_pos_small, x_pos_small, special.gammaincc, tf.igammac) except ImportError as e: tf.logging.warn("Cannot test special functions: %s" % str(e))
Example 16
Project: deep_image_model Author: tobegit3hub File: cwise_ops_test.py License: Apache License 2.0 | 6 votes |
def testInt32Basic(self): x = np.arange(1, 13, 2).reshape(1, 3, 2).astype(np.int32) y = np.arange(1, 7, 1).reshape(1, 3, 2).astype(np.int32) self._compareBoth(x, y, np.add, tf.add) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y, np.true_divide, tf.truediv) self._compareBoth(x, y, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.mod, tf.mod) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y, np.true_divide, _TRUEDIV) self._compareBoth(x, y, np.floor_divide, _FLOORDIV) self._compareBoth(x, y, np.mod, _MOD) # _compareBoth tests on GPU only for floating point types, so test # _MOD for int32 on GPU by calling _compareGpu self._compareGpu(x, y, np.mod, _MOD)
Example 17
Project: predictive-maintenance-using-machine-learning Author: awslabs File: test_ufunc.py License: Apache License 2.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example 18
Project: pySINDy Author: luckystarufo File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 19
Project: mxnet-lambda Author: awslabs File: test_ufunc.py License: Apache License 2.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 20
Project: lkpy Author: lenskit File: test_matrix_csr.py License: MIT License | 6 votes |
def test_csr_from_coo_novals(): for i in range(50): coords = np.random.choice(np.arange(50 * 100, dtype=np.int32), 1000, False) rows = np.mod(coords, 100, dtype=np.int32) cols = np.floor_divide(coords, 100, dtype=np.int32) csr = lm.CSR.from_coo(rows, cols, None, (100, 50)) assert csr.nrows == 100 assert csr.ncols == 50 assert csr.nnz == 1000 for i in range(100): sp = csr.rowptrs[i] ep = csr.rowptrs[i+1] assert ep - sp == np.sum(rows == i) points, = np.nonzero(rows == i) po = np.argsort(cols[points]) points = points[po] assert all(np.sort(csr.colinds[sp:ep]) == cols[points]) assert np.sum(csr.row(i)) == len(points)
Example 21
Project: SpaceNet_Off_Nadir_Solutions Author: SpaceNetChallenge File: convert_test.py License: Apache License 2.0 | 6 votes |
def process_image(img_id): if 'Pan-Sharpen_' in img_id: img_id = img_id.split('Pan-Sharpen_')[1] img = io.imread(path.join(test_dir, '_'.join(img_id.split('_')[:4]), 'Pan-Sharpen', 'Pan-Sharpen_' + img_id+'.tif')) nir = img[:, :, 3:] img = img[:, :, :3] np.clip(img, None, threshold, out=img) img = np.floor_divide(img, threshold / 255).astype('uint8') cv2.imwrite(path.join(test_png, img_id + '.png'), img, [cv2.IMWRITE_PNG_COMPRESSION, 9]) img2 = io.imread(path.join(test_dir, '_'.join(img_id.split('_')[:4]), 'MS', 'MS_' + img_id+'.tif')) img2 = np.rollaxis(img2, 0, 3) img2 = cv2.resize(img2, (900, 900), interpolation=cv2.INTER_LANCZOS4) img_0_3_5 = (np.clip(img2[..., [0, 3, 5]], None, (2000, 3000, 3000)) / (np.array([2000, 3000, 3000]) / 255)).astype('uint8') cv2.imwrite(path.join(test_png2, img_id + '.png'), img_0_3_5, [cv2.IMWRITE_PNG_COMPRESSION, 9]) pan = io.imread(path.join(test_dir, '_'.join(img_id.split('_')[:4]), 'PAN', 'PAN_' + img_id+'.tif')) pan = pan[..., np.newaxis] img_pan_6_7 = np.concatenate([pan, img2[..., 7:], nir], axis=2) img_pan_6_7 = (np.clip(img_pan_6_7, None, (3000, 5000, 5000)) / (np.array([3000, 5000, 5000]) / 255)).astype('uint8') cv2.imwrite(path.join(test_png3, img_id + '.png'), img_pan_6_7, [cv2.IMWRITE_PNG_COMPRESSION, 9])
Example 22
Project: elasticintel Author: securityclippy File: test_ufunc.py License: GNU General Public License v3.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 23
Project: gnocchi Author: gnocchixyz File: carbonara.py License: Apache License 2.0 | 5 votes |
def median(self): ordered = numpy.lexsort((self._ts['values'], self.indexes)) # TODO(gordc): can use np.divmod when centos supports numpy 1.13 mid_diff = numpy.floor_divide(self.counts, 2) odd = numpy.mod(self.counts, 2) mid_floor = (numpy.cumsum(self.counts) - 1) - mid_diff mid_ceil = mid_floor + (odd + 1) % 2 return make_timeseries( self.tstamps, (self._ts['values'][ordered][mid_floor] + self._ts['values'][ordered][mid_ceil]) / 2.0)
Example 24
Project: baseband Author: mhvk File: encoding.py License: GNU General Public License v3.0 | 5 votes |
def encode_2bit_base(values): """Generic encoder for data stored using two bits. This returns an unsigned integer array containing encoded sample values that range from 0 to 3. The conversion from floating point sample value to unsigned int is given below, with ``lv = TWO_BIT_1_SIGMA = 2.1745``: ================= ====== Input range Output ================= ====== value < -lv 0 -lv < value < 0. 2 0. < value < lv 1 lv < value 3 ================= ====== This does not pack the samples into bytes. """ # Optimized for speed by doing calculations in-place, and ensuring that # the dtypes match. values = np.clip(values, clip_low, clip_high) values += two_bit_2_sigma bitvalues = np.empty(values.shape, np.uint8) return np.floor_divide(values, TWO_BIT_1_SIGMA, out=bitvalues, casting='unsafe')
Example 25
Project: recruit Author: Frank-qlu File: test_umath.py License: Apache License 2.0 | 5 votes |
def test_floor_division_complex(self): # check that implementation is correct msg = "Complex floor division implementation check" x = np.array([.9 + 1j, -.1 + 1j, .9 + .5*1j, .9 + 2.*1j], dtype=np.complex128) y = np.array([0., -1., 0., 0.], dtype=np.complex128) assert_equal(np.floor_divide(x**2, x), y, err_msg=msg) # check overflow, underflow msg = "Complex floor division overflow/underflow check" x = np.array([1.e+110, 1.e-110], dtype=np.complex128) y = np.floor_divide(x**2, x) assert_equal(y, [1.e+110, 0], err_msg=msg)
Example 26
Project: recruit Author: Frank-qlu File: test_umath.py License: Apache License 2.0 | 5 votes |
def floor_divide_and_remainder(x, y): return (np.floor_divide(x, y), np.remainder(x, y))
Example 27
Project: recruit Author: Frank-qlu File: frequencies.py License: Apache License 2.0 | 5 votes |
def _is_business_daily(self): # quick check: cannot be business daily if self.day_deltas != [1, 3]: return False # probably business daily, but need to confirm first_weekday = self.index[0].weekday() shifts = np.diff(self.index.asi8) shifts = np.floor_divide(shifts, _ONE_DAY) weekdays = np.mod(first_weekday + np.cumsum(shifts), 7) return np.all(((weekdays == 0) & (shifts == 3)) | ((weekdays > 0) & (weekdays <= 4) & (shifts == 1)))
Example 28
Project: knmt Author: fabiencro File: utils.py License: GNU General Public License v3.0 | 5 votes |
def generate_pos_vectors(d_model, max_length): pos_component = np.arange(max_length, dtype = np.float32) dim_component = np.arange(d_model, dtype = np.float32) dim_component_even = np.floor_divide(dim_component, 2) * 2 dim_factor = np.power(1e-4, dim_component_even / d_model) pos_dim = pos_component[:, None] * dim_factor[None, :] pos_dim[:, ::2] = np.sin(pos_dim[:, ::2]) pos_dim[:, 1::2] = np.cos(pos_dim[:, 1::2]) return pos_dim ######################################################################## # batch handling #
Example 29
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_umath.py License: MIT License | 5 votes |
def test_floor_division_complex(self): # check that implementation is correct msg = "Complex floor division implementation check" x = np.array([.9 + 1j, -.1 + 1j, .9 + .5*1j, .9 + 2.*1j], dtype=np.complex128) y = np.array([0., -1., 0., 0.], dtype=np.complex128) assert_equal(np.floor_divide(x**2, x), y, err_msg=msg) # check overflow, underflow msg = "Complex floor division overflow/underflow check" x = np.array([1.e+110, 1.e-110], dtype=np.complex128) y = np.floor_divide(x**2, x) assert_equal(y, [1.e+110, 0], err_msg=msg)
Example 30
Project: vnpy_crypto Author: birforce File: test_umath.py License: MIT License | 5 votes |
def test_floor_division_complex(self): # check that implementation is correct msg = "Complex floor division implementation check" x = np.array([.9 + 1j, -.1 + 1j, .9 + .5*1j, .9 + 2.*1j], dtype=np.complex128) y = np.array([0., -1., 0., 0.], dtype=np.complex128) assert_equal(np.floor_divide(x**2, x), y, err_msg=msg) # check overflow, underflow msg = "Complex floor division overflow/underflow check" x = np.array([1.e+110, 1.e-110], dtype=np.complex128) y = np.floor_divide(x**2, x) assert_equal(y, [1.e+110, 0], err_msg=msg)