Python numpy.ptp() Examples
The following are 30 code examples for showing how to use numpy.ptp(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: pyLucid Author: yelantingfeng File: lucidDream.py License: MIT License | 6 votes |
def spline_transform_multi(img, mask): bimask=mask>0 M,N=np.where(bimask) w=np.ptp(N)+1 h=np.ptp(M)+1 kernel=cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) bound=cv2.dilate(bimask.astype('uint8'),kernel)-bimask y,x=np.where(bound>0) if x.size>4: newxy=thin_plate_transform(x,y,w,h,mask.shape[:2],num_points=5) new_img=cv2.remap(img,newxy,None,cv2.INTER_LINEAR) new_msk=cv2.remap(mask,newxy,None,cv2.INTER_NEAREST) elif x.size>0: new_img=img new_msk=mask return new_img,new_msk
Example 2
Project: ratcave Author: ratcave File: collision.py License: MIT License | 6 votes |
def __init__(self, parent=None, visible=True, drawmode=gl.GL_LINES, position=(0, 0, 0), **kwargs): """Calculates collision by checking if a point is inside a sphere around the mesh vertices.""" # kwargs['scale'] = np.ptp(parent.vertices, axis=0).max() / 2 if 'scale' not in kwargs else kwargs['scale'] # kwargs[''] from .wavefront import WavefrontReader from .resources import obj_primitives reader = WavefrontReader(obj_primitives) body = reader.bodies[self.primitive_shape] vertices, normals, texcoords = body['v'], body['vn'], body['vt'] super(ColliderBase, self).__init__(arrays=[vertices, normals, texcoords], drawmode=drawmode, visible=visible, position=position, **kwargs) self.uniforms['diffuse'] = 1., 0, 0 # Changes Scenegraph.parent execution order so self.scale can occur in the CollisionChecker parent property. if parent: self.parent = parent
Example 3
Project: recruit Author: Frank-qlu File: histograms.py License: Apache License 2.0 | 6 votes |
def _hist_bin_sqrt(x, range): """ Square root histogram bin estimator. Bin width is inversely proportional to the data size. Used by many programs for its simplicity. Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ del range # unused return x.ptp() / np.sqrt(x.size)
Example 4
Project: recruit Author: Frank-qlu File: histograms.py License: Apache License 2.0 | 6 votes |
def _hist_bin_sturges(x, range): """ Sturges histogram bin estimator. A very simplistic estimator based on the assumption of normality of the data. This estimator has poor performance for non-normal data, which becomes especially obvious for large data sets. The estimate depends only on size of the data. Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ del range # unused return x.ptp() / (np.log2(x.size) + 1.0)
Example 5
Project: recruit Author: Frank-qlu File: histograms.py License: Apache License 2.0 | 6 votes |
def _hist_bin_rice(x, range): """ Rice histogram bin estimator. Another simple estimator with no normality assumption. It has better performance for large data than Sturges, but tends to overestimate the number of bins. The number of bins is proportional to the cube root of data size (asymptotically optimal). The estimate depends only on size of the data. Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ del range # unused return x.ptp() / (2.0 * x.size ** (1.0 / 3))
Example 6
Project: mars Author: mars-project File: test_statistics_execute.py License: Apache License 2.0 | 6 votes |
def testPtpExecution(self): x = arange(4, chunk_size=1).reshape(2, 2) t = ptp(x, axis=0) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.ptp(np.arange(4).reshape(2, 2), axis=0) np.testing.assert_equal(res, expected) t = ptp(x, axis=1) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.ptp(np.arange(4).reshape(2, 2), axis=1) np.testing.assert_equal(res, expected) t = ptp(x) res = self.executor.execute_tensor(t)[0] expected = np.ptp(np.arange(4).reshape(2, 2)) np.testing.assert_equal(res, expected)
Example 7
Project: kits19.MIScnn Author: muellerdo File: visualizer.py License: GNU General Public License v3.0 | 6 votes |
def overlay_segmentation(vol, seg): # Scale volume to greyscale range vol_greyscale = (255*(vol - np.min(vol))/np.ptp(vol)).astype(int) # Convert volume to RGB vol_rgb = np.stack([vol_greyscale, vol_greyscale, vol_greyscale], axis=-1) # Initialize segmentation in RGB shp = seg.shape seg_rgb = np.zeros((shp[0], shp[1], shp[2], 3), dtype=np.int) # Set class to appropriate color seg_rgb[np.equal(seg, 1)] = [255, 0, 0] seg_rgb[np.equal(seg, 2)] = [0, 0, 255] # Get binary array for places where an ROI lives segbin = np.greater(seg, 0) repeated_segbin = np.stack((segbin, segbin, segbin), axis=-1) # Weighted sum where there's a value to overlay alpha = 0.3 vol_overlayed = np.where( repeated_segbin, np.round(alpha*seg_rgb+(1-alpha)*vol_rgb).astype(np.uint8), np.round(vol_rgb).astype(np.uint8) ) # Return final volume with segmentation overlay return vol_overlayed
Example 8
Project: Generative-Adversarial-Networks-Cookbook Author: PacktPublishing File: train.py License: MIT License | 6 votes |
def plot_checkpoint(self,e): filename = "/data/sample_"+str(e)+".png" noise = self.sample_latent_space(16) images = self.generator.Generator.predict(noise) plt.figure(figsize=(10,10)) for i in range(images.shape[0]): plt.subplot(4, 4, i+1) if self.C==1: image = images[i, :, :] image = np.reshape(image, [self.H,self.W]) image = (255*(image - np.min(image))/np.ptp(image)).astype(int) plt.imshow(image,cmap='gray') elif self.C==3: image = images[i, :, :, :] image = np.reshape(image, [self.H,self.W,self.C]) image = (255*(image - np.min(image))/np.ptp(image)).astype(int) plt.imshow(image) plt.axis('off') plt.tight_layout() plt.savefig(filename) plt.close('all') return
Example 9
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: histograms.py License: MIT License | 6 votes |
def _hist_bin_sqrt(x, range): """ Square root histogram bin estimator. Bin width is inversely proportional to the data size. Used by many programs for its simplicity. Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ del range # unused return x.ptp() / np.sqrt(x.size)
Example 10
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: histograms.py License: MIT License | 6 votes |
def _hist_bin_sturges(x, range): """ Sturges histogram bin estimator. A very simplistic estimator based on the assumption of normality of the data. This estimator has poor performance for non-normal data, which becomes especially obvious for large data sets. The estimate depends only on size of the data. Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ del range # unused return x.ptp() / (np.log2(x.size) + 1.0)
Example 11
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: histograms.py License: MIT License | 6 votes |
def _hist_bin_rice(x, range): """ Rice histogram bin estimator. Another simple estimator with no normality assumption. It has better performance for large data than Sturges, but tends to overestimate the number of bins. The number of bins is proportional to the cube root of data size (asymptotically optimal). The estimate depends only on size of the data. Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ del range # unused return x.ptp() / (2.0 * x.size ** (1.0 / 3))
Example 12
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: tritools.py License: MIT License | 6 votes |
def scale_factors(self): """ Factors to rescale the triangulation into a unit square. Returns *k*, tuple of 2 scale factors. Returns ------- k : tuple of 2 floats (kx, ky) Tuple of floats that would rescale the triangulation : ``[triangulation.x * kx, triangulation.y * ky]`` fits exactly inside a unit square. """ compressed_triangles = self._triangulation.get_masked_triangles() node_used = (np.bincount(np.ravel(compressed_triangles), minlength=self._triangulation.x.size) != 0) return (1 / np.ptp(self._triangulation.x[node_used]), 1 / np.ptp(self._triangulation.y[node_used]))
Example 13
Project: mne-features Author: mne-tools File: univariate.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def compute_ptp_amp(data): """Peak-to-peak (PTP) amplitude of the data (per channel). Parameters ---------- data : ndarray, shape (n_channels, n_times) Returns ------- output : ndarray, shape (n_channels,) Notes ----- Alias of the feature function: **ptp_amp** """ return np.ptp(data, axis=-1)
Example 14
Project: GraphicDesignPatternByPython Author: Relph1119 File: tritools.py License: MIT License | 6 votes |
def scale_factors(self): """ Factors to rescale the triangulation into a unit square. Returns *k*, tuple of 2 scale factors. Returns ------- k : tuple of 2 floats (kx, ky) Tuple of floats that would rescale the triangulation : ``[triangulation.x * kx, triangulation.y * ky]`` fits exactly inside a unit square. """ compressed_triangles = self._triangulation.get_masked_triangles() node_used = (np.bincount(np.ravel(compressed_triangles), minlength=self._triangulation.x.size) != 0) return (1 / np.ptp(self._triangulation.x[node_used]), 1 / np.ptp(self._triangulation.y[node_used]))
Example 15
Project: python3_ios Author: holzschu File: tritools.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def scale_factors(self): """ Factors to rescale the triangulation into a unit square. Returns *k*, tuple of 2 scale factors. Returns ------- k : tuple of 2 floats (kx, ky) Tuple of floats that would rescale the triangulation : ``[triangulation.x * kx, triangulation.y * ky]`` fits exactly inside a unit square. """ compressed_triangles = self._triangulation.get_masked_triangles() node_used = (np.bincount(np.ravel(compressed_triangles), minlength=self._triangulation.x.size) != 0) return (1 / np.ptp(self._triangulation.x[node_used]), 1 / np.ptp(self._triangulation.y[node_used]))
Example 16
Project: predictive-maintenance-using-machine-learning Author: awslabs File: histograms.py License: Apache License 2.0 | 6 votes |
def _hist_bin_sqrt(x, range): """ Square root histogram bin estimator. Bin width is inversely proportional to the data size. Used by many programs for its simplicity. Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ del range # unused return x.ptp() / np.sqrt(x.size)
Example 17
Project: predictive-maintenance-using-machine-learning Author: awslabs File: histograms.py License: Apache License 2.0 | 6 votes |
def _hist_bin_sturges(x, range): """ Sturges histogram bin estimator. A very simplistic estimator based on the assumption of normality of the data. This estimator has poor performance for non-normal data, which becomes especially obvious for large data sets. The estimate depends only on size of the data. Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ del range # unused return x.ptp() / (np.log2(x.size) + 1.0)
Example 18
Project: predictive-maintenance-using-machine-learning Author: awslabs File: histograms.py License: Apache License 2.0 | 6 votes |
def _hist_bin_rice(x, range): """ Rice histogram bin estimator. Another simple estimator with no normality assumption. It has better performance for large data than Sturges, but tends to overestimate the number of bins. The number of bins is proportional to the cube root of data size (asymptotically optimal). The estimate depends only on size of the data. Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ del range # unused return x.ptp() / (2.0 * x.size ** (1.0 / 3))
Example 19
Project: autoreject Author: autoreject File: autoreject.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def fit(self, X, y=None): """Fit it. Parameters ---------- X : array, shape (n_epochs, n_times) The data for one channel. y : None Redundant. Necessary to be compatible with sklearn API. """ deltas = np.ptp(X, axis=1) self.deltas_ = deltas keep = deltas <= self.thresh # XXX: actually go over all the folds before setting the min # in skopt. Otherwise, may confuse skopt. if self.thresh < np.min(np.ptp(X, axis=1)): assert np.sum(keep) == 0 keep = deltas <= np.min(np.ptp(X, axis=1)) self.mean_ = _slicemean(X, keep, axis=0) return self
Example 20
Project: autoreject Author: autoreject File: autoreject.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def _vote_bad_epochs(self, epochs, picks): """Each channel votes for an epoch as good or bad. Parameters ---------- epochs : instance of mne.Epochs The epochs object for which bad epochs must be found. picks : array-like The indices of the channels to consider. """ labels = np.zeros((len(epochs), len(epochs.ch_names))) labels.fill(np.nan) bad_sensor_counts = np.zeros((len(epochs),)) this_ch_names = [epochs.ch_names[p] for p in picks] deltas = np.ptp(epochs.get_data()[:, picks], axis=-1).T threshes = [self.threshes_[ch_name] for ch_name in this_ch_names] for ch_idx, (delta, thresh) in enumerate(zip(deltas, threshes)): bad_epochs_idx = np.where(delta > thresh)[0] labels[:, picks[ch_idx]] = 0 labels[bad_epochs_idx, picks[ch_idx]] = 1 bad_sensor_counts = np.sum(labels == 1, axis=1) return labels, bad_sensor_counts
Example 21
Project: ASR33 Author: hughpyle File: prep_ascii.py License: MIT License | 6 votes |
def load_image(filename): if filename in loaded_files: return loaded_files[filename] img = imageio.imread(filename, as_gray=True).astype(np.float) # Normalize the whole image # img *= 1.0/(img.max() - img.min()) img = (img - np.min(img))/np.ptp(img) # Normalize on a sigmoid curve to better separate ink from paper k = 10 img = np.sqrt(1 / (1 + np.exp(k * (img - 0.5)))) loaded_files[filename] = img return img # Pull out the image of a single character. # Each character has multiple images, specify index (0-5) to choose one
Example 22
Project: plotnine Author: has2k1 File: stat_ydensity.py License: GNU General Public License v2.0 | 6 votes |
def compute_group(cls, data, scales, **params): n = len(data) if n == 0: return pd.DataFrame() weight = data.get('weight') if params['trim']: range_y = data['y'].min(), data['y'].max() else: range_y = scales.y.dimension() dens = compute_density(data['y'], weight, range_y, **params) dens['y'] = dens['x'] dens['x'] = np.mean([data['x'].min(), data['x'].max()]) # Compute width if x has multiple values if len(np.unique(data['x'])) > 1: dens['width'] = np.ptp(data['x']) * 0.9 return dens
Example 23
Project: DABEST-python Author: ACCLAB File: old_test_plotting.py License: BSD 3-Clause Clear License | 6 votes |
def test_swarmspan(): print('Testing swarmspans') base_mean = np.random.randint(10, 101) seed, ptp, df = create_dummy_dataset(base_mean=base_mean) print('\nSeed = {}; base mean = {}'.format(seed, base_mean)) for c in df.columns[1:-1]: print('{}...'.format(c)) f1, swarmplt = plt.subplots(1) sns.swarmplot(data=df[[df.columns[0], c]], ax=swarmplt) sns_yspans = [] for coll in swarmplt.collections: sns_yspans.append(get_swarm_yspans(coll)) f2, b = _api.plot(data=df, idx=(df.columns[0], c)) dabest_yspans = [] for coll in f2.axes[0].collections: dabest_yspans.append(get_swarm_yspans(coll)) for j, span in enumerate(sns_yspans): assert span == pytest.approx(dabest_yspans[j])
Example 24
Project: ratcave Author: ratcave File: collision.py License: MIT License | 5 votes |
def _fit_to_parent_vertices(self, vertices): return np.ptp(vertices, axis=0) / 2
Example 25
Project: ratcave Author: ratcave File: collision.py License: MIT License | 5 votes |
def _fit_to_parent_vertices(self, vertices): return np.ptp(vertices, axis=0) / 2
Example 26
Project: ratcave Author: ratcave File: collision.py License: MIT License | 5 votes |
def _fit_to_parent_vertices(self, vertices, scale_gain=1e5): axes = [a for a in range(3) if a != self.ignore_axis] x, z = np.ptp(vertices[:, axes], axis=0) / 2 return x, scale_gain, z # scale_gain makes it clear in the display that one dimension is being ignored.
Example 27
Project: recruit Author: Frank-qlu File: histograms.py License: Apache License 2.0 | 5 votes |
def _hist_bin_stone(x, range): """ Histogram bin estimator based on minimizing the estimated integrated squared error (ISE). The number of bins is chosen by minimizing the estimated ISE against the unknown true distribution. The ISE is estimated using cross-validation and can be regarded as a generalization of Scott's rule. https://en.wikipedia.org/wiki/Histogram#Scott.27s_normal_reference_rule This paper by Stone appears to be the origination of this rule. http://digitalassets.lib.berkeley.edu/sdtr/ucb/text/34.pdf Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. range : (float, float) The lower and upper range of the bins. Returns ------- h : An estimate of the optimal bin width for the given data. """ n = x.size ptp_x = np.ptp(x) if n <= 1 or ptp_x == 0: return 0 def jhat(nbins): hh = ptp_x / nbins p_k = np.histogram(x, bins=nbins, range=range)[0] / n return (2 - (n + 1) * p_k.dot(p_k)) / hh nbins_upper_bound = max(100, int(np.sqrt(n))) nbins = min(_range(1, nbins_upper_bound + 1), key=jhat) if nbins == nbins_upper_bound: warnings.warn("The number of bins estimated may be suboptimal.", RuntimeWarning, stacklevel=2) return ptp_x / nbins
Example 28
Project: recruit Author: Frank-qlu File: histograms.py License: Apache License 2.0 | 5 votes |
def _hist_bin_doane(x, range): """ Doane's histogram bin estimator. Improved version of Sturges' formula which works better for non-normal data. See stats.stackexchange.com/questions/55134/doanes-formula-for-histogram-binning Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ del range # unused if x.size > 2: sg1 = np.sqrt(6.0 * (x.size - 2) / ((x.size + 1.0) * (x.size + 3))) sigma = np.std(x) if sigma > 0.0: # These three operations add up to # g1 = np.mean(((x - np.mean(x)) / sigma)**3) # but use only one temp array instead of three temp = x - np.mean(x) np.true_divide(temp, sigma, temp) np.power(temp, 3, temp) g1 = np.mean(temp) return x.ptp() / (1.0 + np.log2(x.size) + np.log2(1.0 + np.absolute(g1) / sg1)) return 0.0
Example 29
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_numeric.py License: MIT License | 5 votes |
def test_ptp(self): a = [3, 4, 5, 10, -3, -5, 6.0] assert_equal(np.ptp(a, axis=0), 15.0)
Example 30
Project: vnpy_crypto Author: birforce File: fromnumeric.py License: MIT License | 5 votes |
def ptp(a, axis=None, out=None): """ Range of values (maximum - minimum) along an axis. The name of the function comes from the acronym for 'peak to peak'. Parameters ---------- a : array_like Input values. axis : int, optional Axis along which to find the peaks. By default, flatten the array. out : array_like Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type of the output values will be cast if necessary. Returns ------- ptp : ndarray A new array holding the result, unless `out` was specified, in which case a reference to `out` is returned. Examples -------- >>> x = np.arange(4).reshape((2,2)) >>> x array([[0, 1], [2, 3]]) >>> np.ptp(x, axis=0) array([2, 2]) >>> np.ptp(x, axis=1) array([1, 1]) """ return _wrapfunc(a, 'ptp', axis=axis, out=out)