Python numpy.isposinf() Examples
The following are 30 code examples for showing how to use numpy.isposinf(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: recruit Author: Frank-qlu File: test_ufunclike.py License: Apache License 2.0 | 6 votes |
def test_scalar(self): x = np.inf actual = np.isposinf(x) expected = np.True_ assert_equal(actual, expected) assert_equal(type(actual), type(expected)) x = -3.4 actual = np.fix(x) expected = np.float64(-3.0) assert_equal(actual, expected) assert_equal(type(actual), type(expected)) out = np.array(0.0) actual = np.fix(x, out=out) assert_(actual is out)
Example 2
Project: nevergrad Author: facebookresearch File: discretization.py License: MIT License | 6 votes |
def probabilities(self) -> np.ndarray: """Creates the probability matrix from the weights """ axis = 1 maxv = np.max(self.weights, axis=1, keepdims=True) hasposinf = np.isposinf(maxv) maxv[np.isinf(maxv)] = 0 # avoid indeterminations exp: np.ndarray = np.exp(self.weights - maxv) # deal with infinite positives special case # by ignoring (0 proba) non-infinte on same row if np.any(hasposinf): is_inf = np.isposinf(self.weights) is_ignored = np.logical_and(np.logical_not(is_inf), hasposinf) exp[is_inf] = 1 exp[is_ignored] = 0 # random choice if sums to 0 sums0 = np.sum(exp, axis=axis) == 0 exp[sums0, :] = 1 exp /= np.sum(exp, axis=axis, keepdims=True) # normalize return exp
Example 3
Project: vnpy_crypto Author: birforce File: test_ufunclike.py License: MIT License | 6 votes |
def test_scalar(self): x = np.inf actual = np.isposinf(x) expected = np.True_ assert_equal(actual, expected) assert_equal(type(actual), type(expected)) x = -3.4 actual = np.fix(x) expected = np.float64(-3.0) assert_equal(actual, expected) assert_equal(type(actual), type(expected)) out = np.array(0.0) actual = np.fix(x, out=out) assert_(actual is out)
Example 4
Project: onnx-tensorflow Author: onnx File: test_node.py License: Apache License 2.0 | 6 votes |
def test_is_inf(self): if legacy_opset_pre_ver(10): raise unittest.SkipTest("ONNX version {} doesn't support IsInf.".format( defs.onnx_opset_version())) input = np.array([-1.2, np.nan, np.inf, 2.8, np.NINF, np.inf], dtype=np.float32) expected_output = { "node_def": np.isinf(input), "node_def_neg_false": np.isposinf(input), "node_def_pos_false": np.isneginf(input) } node_defs = { "node_def": helper.make_node("IsInf", ["X"], ["Y"]), "node_def_neg_false": helper.make_node("IsInf", ["X"], ["Y"], detect_negative=0), "node_def_pos_false": helper.make_node("IsInf", ["X"], ["Y"], detect_positive=0) } for key in node_defs: output = run_node(node_defs[key], [input]) np.testing.assert_equal(output["Y"], expected_output[key])
Example 5
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_ufunclike.py License: MIT License | 6 votes |
def test_scalar(self): x = np.inf actual = np.isposinf(x) expected = np.True_ assert_equal(actual, expected) assert_equal(type(actual), type(expected)) x = -3.4 actual = np.fix(x) expected = np.float64(-3.0) assert_equal(actual, expected) assert_equal(type(actual), type(expected)) out = np.array(0.0) actual = np.fix(x, out=out) assert_(actual is out)
Example 6
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_ufunclike.py License: MIT License | 6 votes |
def test_scalar(self): x = np.inf actual = np.isposinf(x) expected = np.True_ assert_equal(actual, expected) assert_equal(type(actual), type(expected)) x = -3.4 actual = np.fix(x) expected = np.float64(-3.0) assert_equal(actual, expected) assert_equal(type(actual), type(expected)) out = np.array(0.0) actual = np.fix(x, out=out) assert_(actual is out)
Example 7
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_basic.py License: MIT License | 6 votes |
def test_kl_div(): def xfunc(x, y): if x < 0 or y < 0 or (y == 0 and x != 0): # extension of natural domain to preserve convexity return np.inf elif np.isposinf(x) or np.isposinf(y): # limits within the natural domain return np.inf elif x == 0: return y else: return special.xlogy(x, x/y) - x + y values = (0, 0.5, 1.0) signs = [-1, 1] arr = [] for sgna, va, sgnb, vb in itertools.product(signs, values, signs, values): arr.append((sgna*va, sgnb*vb)) z = np.array(arr, dtype=float) w = np.vectorize(xfunc, otypes=[np.float64])(z[:,0], z[:,1]) assert_func_equal(special.kl_div, w, z, rtol=1e-13, atol=1e-13)
Example 8
Project: predictive-maintenance-using-machine-learning Author: awslabs File: test_ufunclike.py License: Apache License 2.0 | 6 votes |
def test_scalar(self): x = np.inf actual = np.isposinf(x) expected = np.True_ assert_equal(actual, expected) assert_equal(type(actual), type(expected)) x = -3.4 actual = np.fix(x) expected = np.float64(-3.0) assert_equal(actual, expected) assert_equal(type(actual), type(expected)) out = np.array(0.0) actual = np.fix(x, out=out) assert_(actual is out)
Example 9
Project: pySINDy Author: luckystarufo File: test_ufunclike.py License: MIT License | 6 votes |
def test_scalar(self): x = np.inf actual = np.isposinf(x) expected = np.True_ assert_equal(actual, expected) assert_equal(type(actual), type(expected)) x = -3.4 actual = np.fix(x) expected = np.float64(-3.0) assert_equal(actual, expected) assert_equal(type(actual), type(expected)) out = np.array(0.0) actual = np.fix(x, out=out) assert_(actual is out)
Example 10
Project: mxnet-lambda Author: awslabs File: test_ufunclike.py License: Apache License 2.0 | 6 votes |
def test_scalar(self): x = np.inf actual = np.isposinf(x) expected = np.True_ assert_equal(actual, expected) assert_equal(type(actual), type(expected)) x = -3.4 actual = np.fix(x) expected = np.float64(-3.0) assert_equal(actual, expected) assert_equal(type(actual), type(expected)) out = np.array(0.0) actual = np.fix(x, out=out) assert_(actual is out)
Example 11
Project: sparse Author: pydata File: common.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def isposinf(x, out=None): """ Test element-wise for positive infinity, return result as sparse ``bool`` array. Parameters ---------- x Input out, optional Output array Examples -------- >>> import sparse >>> x = sparse.as_coo(np.array([np.inf])) >>> sparse.isposinf(x).todense() array([ True]) See Also -------- numpy.isposinf : The NumPy equivalent """ from .core import elemwise return elemwise(lambda x, out=None, dtype=None: np.isposinf(x, out=out), x, out=out)
Example 12
Project: cooltools Author: mirnylab File: numutils.py License: MIT License | 6 votes |
def fill_inf(arr, pos_value=0, neg_value=0, copy=True): """Replaces positive and negative infinity entries in an array with the provided values. Parameters ---------- arr : np.array pos_value : float Fill value for np.inf neg_value : float Fill value for -np.inf copy : bool, optional If True, creates a copy of x, otherwise replaces values in-place. By default, True. """ if copy: arr = arr.copy() arr[np.isposinf(arr)] = pos_value arr[np.isneginf(arr)] = neg_value return arr
Example 13
Project: elasticintel Author: securityclippy File: test_ufunclike.py License: GNU General Public License v3.0 | 6 votes |
def test_scalar(self): x = np.inf actual = np.isposinf(x) expected = np.True_ assert_equal(actual, expected) assert_equal(type(actual), type(expected)) x = -3.4 actual = np.fix(x) expected = np.float64(-3.0) assert_equal(actual, expected) assert_equal(type(actual), type(expected)) out = np.array(0.0) actual = np.fix(x, out=out) assert_(actual is out)
Example 14
Project: coffeegrindsize Author: jgagneastro File: test_ufunclike.py License: MIT License | 6 votes |
def test_scalar(self): x = np.inf actual = np.isposinf(x) expected = np.True_ assert_equal(actual, expected) assert_equal(type(actual), type(expected)) x = -3.4 actual = np.fix(x) expected = np.float64(-3.0) assert_equal(actual, expected) assert_equal(type(actual), type(expected)) out = np.array(0.0) actual = np.fix(x, out=out) assert_(actual is out)
Example 15
Project: gluon-ts Author: awslabs File: util.py License: Apache License 2.0 | 6 votes |
def jsonify_floats(json_object): """ Traverses through the JSON object and converts non JSON-spec compliant floats(nan, -inf, inf) to their string representations. Parameters ---------- json_object JSON object """ if isinstance(json_object, dict): return {k: jsonify_floats(v) for k, v in json_object.items()} elif isinstance(json_object, list): return [jsonify_floats(item) for item in json_object] elif isinstance(json_object, float): if np.isnan(json_object): return "NaN" elif np.isposinf(json_object): return "Infinity" elif np.isneginf(json_object): return "-Infinity" return json_object return json_object
Example 16
Project: Carnets Author: holzschu File: converters.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def output(self, value, mask): if mask: return self._null_output if np.isfinite(value): if not np.isscalar(value): value = value.dtype.type(value) result = self._output_format.format(value) if result.startswith('array'): raise RuntimeError() if (self._output_format[2] == 'r' and result.endswith('.0')): result = result[:-2] return result elif np.isnan(value): return 'NaN' elif np.isposinf(value): return '+InF' elif np.isneginf(value): return '-InF' # Should never raise vo_raise(f"Invalid floating point value '{value}'")
Example 17
Project: Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda Author: PacktPublishing File: test_ufunclike.py License: MIT License | 6 votes |
def test_scalar(self): x = np.inf actual = np.isposinf(x) expected = np.True_ assert_equal(actual, expected) assert_equal(type(actual), type(expected)) x = -3.4 actual = np.fix(x) expected = np.float64(-3.0) assert_equal(actual, expected) assert_equal(type(actual), type(expected)) out = np.array(0.0) actual = np.fix(x, out=out) assert_(actual is out)
Example 18
Project: twitter-stock-recommendation Author: alvarobartt File: test_ufunclike.py License: MIT License | 6 votes |
def test_scalar(self): x = np.inf actual = np.isposinf(x) expected = np.True_ assert_equal(actual, expected) assert_equal(type(actual), type(expected)) x = -3.4 actual = np.fix(x) expected = np.float64(-3.0) assert_equal(actual, expected) assert_equal(type(actual), type(expected)) out = np.array(0.0) actual = np.fix(x, out=out) assert_(actual is out)
Example 19
Project: EXOSIMS Author: dsavransky File: test_OpticalSystem.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_init_owa_inf(self): r"""Test of initialization and __init__ -- OWA. Method: An affordance to allow you to set OWA = +Infinity from a JSON specs-file is offered by OpticalSystem: if OWA is supplied as 0, it is set to +Infinity. We instantiate OpticalSystem objects and verify that this is done. """ for specs in [specs_default, specs_simple, specs_multi]: # the input dict is modified in-place -- so copy it our_specs = deepcopy(specs) our_specs['OWA'] = 0 for syst in our_specs['starlightSuppressionSystems']: syst['OWA'] = 0 optsys = self.fixture(**deepcopy(our_specs)) self.assertTrue(np.isposinf(optsys.OWA.value)) for syst in optsys.starlightSuppressionSystems: self.assertTrue(np.isposinf(syst['OWA'].value)) # repeat, but allow the special value to propagate up for specs in [specs_default, specs_simple, specs_multi]: # the input dict is modified in-place -- so copy it our_specs = deepcopy(specs) for syst in our_specs['starlightSuppressionSystems']: syst['OWA'] = 0 optsys = self.fixture(**deepcopy(our_specs)) self.assertTrue(np.isposinf(optsys.OWA.value))
Example 20
Project: recruit Author: Frank-qlu File: test_ufunclike.py License: Apache License 2.0 | 5 votes |
def test_isposinf(self): a = nx.array([nx.inf, -nx.inf, nx.nan, 0.0, 3.0, -3.0]) out = nx.zeros(a.shape, bool) tgt = nx.array([True, False, False, False, False, False]) res = ufl.isposinf(a) assert_equal(res, tgt) res = ufl.isposinf(a, out) assert_equal(res, tgt) assert_equal(out, tgt) a = a.astype(np.complex) with assert_raises(TypeError): ufl.isposinf(a)
Example 21
Project: recruit Author: Frank-qlu File: test_ufunclike.py License: Apache License 2.0 | 5 votes |
def test_deprecated(self): # NumPy 1.13.0, 2017-04-26 assert_warns(DeprecationWarning, ufl.fix, [1, 2], y=nx.empty(2)) assert_warns(DeprecationWarning, ufl.isposinf, [1, 2], y=nx.empty(2)) assert_warns(DeprecationWarning, ufl.isneginf, [1, 2], y=nx.empty(2))
Example 22
Project: tensorprob Author: tensorprob File: utilities.py License: MIT License | 5 votes |
def set_logp_to_neg_inf(X, logp, bounds): """Set `logp` to negative infinity when `X` is outside the allowed bounds. # Arguments X: tensorflow.Tensor The variable to apply the bounds to logp: tensorflow.Tensor The log probability corrosponding to `X` bounds: list of `Region` objects The regions corrosponding to allowed regions of `X` # Returns logp: tensorflow.Tensor The newly bounded log probability """ conditions = [] for l, u in bounds: lower_is_neg_inf = not isinstance(l, tf.Tensor) and np.isneginf(l) upper_is_pos_inf = not isinstance(u, tf.Tensor) and np.isposinf(u) if not lower_is_neg_inf and upper_is_pos_inf: conditions.append(tf.greater(X, l)) elif lower_is_neg_inf and not upper_is_pos_inf: conditions.append(tf.less(X, u)) elif not (lower_is_neg_inf or upper_is_pos_inf): conditions.append(tf.logical_and(tf.greater(X, l), tf.less(X, u))) if len(conditions) > 0: is_inside_bounds = conditions[0] for condition in conditions[1:]: is_inside_bounds = tf.logical_or(is_inside_bounds, condition) logp = tf.select( is_inside_bounds, logp, tf.fill(tf.shape(X), config.dtype(-np.inf)) ) return logp
Example 23
Project: vnpy_crypto Author: birforce File: test_ufunclike.py License: MIT License | 5 votes |
def test_isposinf(self): a = nx.array([nx.inf, -nx.inf, nx.nan, 0.0, 3.0, -3.0]) out = nx.zeros(a.shape, bool) tgt = nx.array([True, False, False, False, False, False]) res = ufl.isposinf(a) assert_equal(res, tgt) res = ufl.isposinf(a, out) assert_equal(res, tgt) assert_equal(out, tgt)
Example 24
Project: vnpy_crypto Author: birforce File: test_ufunclike.py License: MIT License | 5 votes |
def test_deprecated(self): # NumPy 1.13.0, 2017-04-26 assert_warns(DeprecationWarning, ufl.fix, [1, 2], y=nx.empty(2)) assert_warns(DeprecationWarning, ufl.isposinf, [1, 2], y=nx.empty(2)) assert_warns(DeprecationWarning, ufl.isneginf, [1, 2], y=nx.empty(2))
Example 25
Project: vnpy_crypto Author: birforce File: test_tost.py License: MIT License | 5 votes |
def assert_almost_equal_inf(x, y, decimal=6, msg=None): x = np.atleast_1d(x) y = np.atleast_1d(y) assert_equal(np.isposinf(x), np.isposinf(y)) assert_equal(np.isneginf(x), np.isneginf(y)) assert_equal(np.isnan(x), np.isnan(y)) assert_almost_equal(x[np.isfinite(x)], y[np.isfinite(y)])
Example 26
Project: gordo Author: equinor File: test_transformers.py License: GNU Affero General Public License v3.0 | 5 votes |
def test_infimputer_fill_values(): """ InfImputer when fill values are provided """ base_x = np.random.random((100, 10)).astype(np.float32) flat_view = base_x.ravel() pos_inf_idxs = [1, 2, 3, 4, 5] neg_inf_idxs = [6, 7, 8, 9, 10] flat_view[pos_inf_idxs] = np.inf flat_view[neg_inf_idxs] = -np.inf # Our base x should now be littered with pos/neg inf values assert np.isposinf(base_x).sum() > 0, "Expected some positive infinity values here" assert np.isneginf(base_x).sum() > 0, "Expected some negative infinity values here" imputer = InfImputer(inf_fill_value=9999.0, neg_inf_fill_value=-9999.0) X = imputer.fit_transform(base_x) np.equal( X.ravel()[[pos_inf_idxs]], np.array([9999.0, 9999.0, 9999.0, 9999.0, 9999.0]) ) np.equal( X.ravel()[[neg_inf_idxs]], np.array([-9999.0, -9999.0, -9999.0, -9999.0, -9999.0]), )
Example 27
Project: gordo Author: equinor File: imputer.py License: GNU Affero General Public License v3.0 | 5 votes |
def transform(self, X: Union[pd.DataFrame, np.ndarray], y=None): # Ensure we're dealing with numpy array if it's a dataframe or similar X = X.values if hasattr(X, "values") else X # Apply specific fill values if provided. if self.inf_fill_value is not None: X[np.isposinf(X)] = self.inf_fill_value if self.neg_inf_fill_value is not None: X[np.isneginf(X)] = self.neg_inf_fill_value # May still be left over infs, if only one fill value was supplied for example if self.strategy is not None: return getattr(self, f"_fill_{self.strategy}")(X) return X
Example 28
Project: gordo Author: equinor File: imputer.py License: GNU Affero General Public License v3.0 | 5 votes |
def _fill_extremes(self, X: np.ndarray): """ Fill negative and postive infs with their dtype's min/max values """ X[np.isposinf(X)] = np.finfo(X.dtype).max X[np.isneginf(X)] = np.finfo(X.dtype).min return X
Example 29
Project: gordo Author: equinor File: imputer.py License: GNU Affero General Public License v3.0 | 5 votes |
def _fill_minmax(self, X: np.ndarray): """ Fill inf/-inf values in features of the array based on their min & max values. Compounded by the ``power`` value so long as the result doesn't exceed the current array's dtype's max/min. Otherwise it will use those. """ # For each feature fill inf/-inf with pre-calculate fill values for feature_idx, (posinf_fill, neginf_fill) in enumerate( zip(self._posinf_fill_values, self._neginf_fill_values) ): X[:, feature_idx][np.isposinf(X[:, feature_idx])] = posinf_fill X[:, feature_idx][np.isneginf(X[:, feature_idx])] = neginf_fill return X
Example 30
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_ufunclike.py License: MIT License | 5 votes |
def test_isposinf(self): a = nx.array([nx.inf, -nx.inf, nx.nan, 0.0, 3.0, -3.0]) out = nx.zeros(a.shape, bool) tgt = nx.array([True, False, False, False, False, False]) res = ufl.isposinf(a) assert_equal(res, tgt) res = ufl.isposinf(a, out) assert_equal(res, tgt) assert_equal(out, tgt) a = a.astype(np.complex) with assert_raises(TypeError): ufl.isposinf(a)