Python numpy.nanmin() Examples
The following are 30 code examples for showing how to use numpy.nanmin(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: neuropythy Author: noahbenson File: core.py License: GNU Affero General Public License v3.0 | 6 votes |
def apply_cmap(zs, cmap, vmin=None, vmax=None, unit=None, logrescale=False): ''' apply_cmap(z, cmap) applies the given cmap to the values in z; if vmin and/or vmax are passed, they are used to scale z. Note that this function can automatically rescale data into log-space if the colormap is a neuropythy log-space colormap such as log_eccentricity. To enable this behaviour use the optional argument logrescale=True. ''' zs = pimms.mag(zs) if unit is None else pimms.mag(zs, unit) zs = np.asarray(zs, dtype='float') if pimms.is_str(cmap): cmap = matplotlib.cm.get_cmap(cmap) if logrescale: if vmin is None: vmin = np.log(np.nanmin(zs)) if vmax is None: vmax = np.log(np.nanmax(zs)) mn = np.exp(vmin) u = zdivide(nanlog(zs + mn) - vmin, vmax - vmin, null=np.nan) else: if vmin is None: vmin = np.nanmin(zs) if vmax is None: vmax = np.nanmax(zs) u = zdivide(zs - vmin, vmax - vmin, null=np.nan) u[np.isnan(u)] = -np.inf return cmap(u)
Example 2
Project: python-control Author: python-control File: grid.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __call__(self, transform_xy, x1, y1, x2, y2): x_, y_ = np.linspace(x1, x2, self.nx), np.linspace(y1, y2, self.ny) x, y = np.meshgrid(x_, y_) lon, lat = transform_xy(np.ravel(x), np.ravel(y)) with np.errstate(invalid='ignore'): if self.lon_cycle is not None: lon0 = np.nanmin(lon) # Changed from 180 to 360 to be able to span only # 90-270 (left hand side) lon -= 360. * ((lon - lon0) > 360.) if self.lat_cycle is not None: lat0 = np.nanmin(lat) # Changed from 180 to 360 to be able to span only # 90-270 (left hand side) lat -= 360. * ((lat - lat0) > 360.) lon_min, lon_max = np.nanmin(lon), np.nanmax(lon) lat_min, lat_max = np.nanmin(lat), np.nanmax(lat) lon_min, lon_max, lat_min, lat_max = \ self._adjust_extremes(lon_min, lon_max, lat_min, lat_max) return lon_min, lon_max, lat_min, lat_max
Example 3
Project: pysat Author: pysat File: test_sw.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_calc_f107a_daily_missing(self): """ Test the calc_f107a routine with some daily data missing""" self.testInst.data = pds.DataFrame({'f107': np.linspace(70, 200, 160)}, index=[pysat.datetime(2009, 1, 1) + pds.DateOffset(days=2*i+1) for i in range(160)]) sw_f107.calc_f107a(self.testInst, f107_name='f107', f107a_name='f107a') # Assert that new data and metadata exist assert 'f107a' in self.testInst.data.columns assert 'f107a' in self.testInst.meta.keys() # Assert the finite values have realistic means assert(np.nanmin(self.testInst['f107a']) > np.nanmin(self.testInst['f107'])) assert(np.nanmax(self.testInst['f107a']) < np.nanmax(self.testInst['f107'])) # Assert the expected number of fill values assert(len(self.testInst['f107a'][np.isnan(self.testInst['f107a'])]) == 40)
Example 4
Project: recruit Author: Frank-qlu File: test_frame.py License: Apache License 2.0 | 6 votes |
def test_unsorted_index_lims(self): df = DataFrame({'y': [0., 1., 2., 3.]}, index=[1., 0., 3., 2.]) ax = df.plot() xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin <= np.nanmin(lines[0].get_data()[0]) assert xmax >= np.nanmax(lines[0].get_data()[0]) df = DataFrame({'y': [0., 1., np.nan, 3., 4., 5., 6.]}, index=[1., 0., 3., 2., np.nan, 3., 2.]) ax = df.plot() xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin <= np.nanmin(lines[0].get_data()[0]) assert xmax >= np.nanmax(lines[0].get_data()[0]) df = DataFrame({'y': [0., 1., 2., 3.], 'z': [91., 90., 93., 92.]}) ax = df.plot(x='z', y='y') xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin <= np.nanmin(lines[0].get_data()[0]) assert xmax >= np.nanmax(lines[0].get_data()[0])
Example 5
Project: basenji Author: calico File: bam_cov.py License: Apache License 2.0 | 6 votes |
def scatter_lims(vals1, vals2=None, buffer=.05): if vals2 is not None: vals = np.concatenate((vals1, vals2)) else: vals = vals1 vmin = np.nanmin(vals) vmax = np.nanmax(vals) buf = .05 * (vmax - vmin) if vmin == 0: vmin -= buf / 2 else: vmin -= buf vmax += buf return vmin, vmax ################################################################################ # __main__ ################################################################################
Example 6
Project: basenji Author: calico File: plots.py License: Apache License 2.0 | 6 votes |
def scatter_lims(vals1, vals2=None, buffer=.05): if vals2 is not None: vals = np.concatenate((vals1, vals2)) else: vals = vals1 vmin = np.nanmin(vals) vmax = np.nanmax(vals) buf = .05 * (vmax - vmin) if vmin == 0: vmin -= buf / 2 else: vmin -= buf vmax += buf return vmin, vmax ################################################################################ # nucleotides # Thanks to Anshul Kundaje, Avanti Shrikumar # https://github.com/kundajelab/deeplift/tree/master/deeplift/visualization
Example 7
Project: LSDMappingTools Author: LSDtopotools File: LSDMap_Subplots.py License: MIT License | 6 votes |
def findminval_multirasters(FileList): """ Loops through a list or array of rasters (np arrays) and finds the minimum single value in the set of arrays. """ overall_min_val = 0 for i in range (len(FileList)): raster_as_array = LSDMap_IO.ReadRasterArrayBlocks(FileList[i]) this_min_val = np.nanmin(raster_as_array) if this_min_val > overall_min_val: overall_min_val = this_min_val print(overall_min_val) return overall_min_val
Example 8
Project: tf-pose Author: SrikanthVelpuri File: ImageView.py License: Apache License 2.0 | 6 votes |
def quickMinMax(self, data): """ Estimate the min/max values of *data* by subsampling. Returns [(min, max), ...] with one item per channel """ while data.size > 1e6: ax = np.argmax(data.shape) sl = [slice(None)] * data.ndim sl[ax] = slice(None, None, 2) data = data[sl] cax = self.axes['c'] if cax is None: return [(float(nanmin(data)), float(nanmax(data)))] else: return [(float(nanmin(data.take(i, axis=cax))), float(nanmax(data.take(i, axis=cax)))) for i in range(data.shape[-1])]
Example 9
Project: geojsoncontour Author: bartromgens File: netcdfhelper.py License: MIT License | 6 votes |
def netcdf_to_geojson(ncfile, var, fourth_dim=None): realpath = os.path.realpath(ncfile) name, ext = os.path.splitext(realpath) X, Y, Z, levels, unit = setup(ncfile, var) figure = plt.figure() ax = figure.add_subplot(111) for t in range(len(Z.time)): third = Z.isel(time=t) position = 0 if len(third.dims) == 3: position = len(getattr(third, third.dims[0]))-1 third = third[position, ] # local min max levels = np.linspace(start=np.nanmin(third), stop=np.nanmax(third), num=20) contourf = ax.contourf(X, Y, third, levels=levels, cmap=plt.cm.viridis) geojsoncontour.contourf_to_geojson( contourf=contourf, geojson_filepath='{}_{}_t{}_{}.geojson'.format(name, var, t, position), ndigits=3, min_angle_deg=None, unit=unit )
Example 10
Project: pyERA Author: mpatacchiola File: som.py License: MIT License | 6 votes |
def return_normalized_distance_matrix(self, input_vector): """Return the min-max normalized euclidean-distance matrix between the input vector and the SOM weights. A value of 0.0 means that the input/weights are equal. @param input_vector the vector to use for the comparison. """ output_matrix = np.zeros((self._matrix_size, self._matrix_size)) it = np.nditer(output_matrix, flags=['multi_index']) while not it.finished: #print "%d <%s>" % (it[0], it.multi_index), dist = self.return_euclidean_distance(input_vector, self._weights_matrix[it.multi_index[0], it.multi_index[1], :]) output_matrix[it.multi_index[0], it.multi_index[1]] = dist it.iternext() #min-max normalization max_value = np.nanmax(output_matrix) min_value = np.nanmin(output_matrix) output_matrix = (output_matrix - min_value) / (max_value - min_value) return output_matrix
Example 11
Project: pyERA Author: mpatacchiola File: som.py License: MIT License | 6 votes |
def return_similarity_matrix(self, input_vector): """Return a similarity matrix where a value is 1.0 if the distance input/weight is zero. @param input_vector the vector to use for the comparison. """ output_matrix = np.zeros((self._matrix_size, self._matrix_size)) it = np.nditer(output_matrix, flags=['multi_index']) while not it.finished: #print "%d <%s>" % (it[0], it.multi_index), dist = self.return_euclidean_distance(input_vector, self._weights_matrix[it.multi_index[0], it.multi_index[1], :]) output_matrix[it.multi_index[0], it.multi_index[1]] = dist it.iternext() #min-max normalization max_value = np.nanmax(output_matrix) min_value = np.nanmin(output_matrix) output_matrix = (output_matrix - min_value) / (max_value - min_value) output_matrix = 1.0 - output_matrix return output_matrix
Example 12
Project: fylearn Author: sorend File: rafpc.py License: MIT License | 6 votes |
def fuzzify_partitions(p): def fuzzify_p(A): R = np.zeros((A.shape[0], A.shape[1] * p)) cmin, cmax = np.nanmin(A, 0), np.nanmax(A, 0) psize = (cmax - cmin) / (p - 1) mus = [] # iterate features for i in range(A.shape[1]): # iterate partitions mu_i = [] offset = cmin[i] for j in range(p): f = fl.TriangularSet(offset - psize[i], offset, offset + psize[i]) R[:, (i * p) + j] = f(A[:, i]) mu_i.append(f) offset += psize[i] mus.append(mu_i) return p, R, mus return fuzzify_p
Example 13
Project: fylearn Author: sorend File: rafpc.py License: MIT License | 6 votes |
def fuzzify_mean(A): # output for fuzzified values R = np.zeros((A.shape[0], A.shape[1] * 3)) cmin, cmax, cmean = np.nanmin(A, 0), np.nanmax(A, 0), np.nanmean(A, 0) left = np.array([cmin - (cmax - cmin), cmin, cmax]).T middle = np.array([cmin, cmean, cmax]).T right = np.array([cmin, cmax, cmax + (cmax - cmin)]).T mus = [] for i in range(A.shape[1]): f_l = fl.TriangularSet(*left[i]) f_m = fl.TriangularSet(*middle[i]) f_r = fl.TriangularSet(*right[i]) R[:,(i*3)] = f_l(A[:,i]) R[:,(i*3)+1] = f_m(A[:,i]) R[:,(i*3)+2] = f_r(A[:,i]) mus.extend([(i, f_l), (i, f_m), (i, f_r)]) return 3, R, mus
Example 14
Project: neuropythy Author: noahbenson File: core.py License: GNU Affero General Public License v3.0 | 5 votes |
def scale_for_cmap(cmap, x, vmin=Ellipsis, vmax=Ellipsis, unit=Ellipsis): ''' scale_for_cmap(cmap, x) yields the values in x rescaled to be appropriate for the given colormap cmap. The cmap must be the name of a colormap or a colormap object. For a given cmap argument, if the object is a colormap itself, it is treated as cmap.name. If the cmap names a colormap known to neuropythy, neuropythy will rescale the values in x according to a heuristic. ''' import matplotlib as mpl if isinstance(cmap, mpl.colors.Colormap): cmap = cmap.name (name, cm) = (None, None) if cmap not in colormaps: for (k,v) in six.iteritems(colormaps): if cmap in k: (name, cm) = (k, v) break else: (name, cm) = (cmap, colormaps[cmap]) if cm is not None: cm = cm if len(cm) == 3 else (cm + (None,)) (cm, (mn,mx), uu) = cm if vmin is Ellipsis: vmin = mn if vmax is Ellipsis: vmax = mx if unit is Ellipsis: unit = uu if vmin is Ellipsis: vmin = None if vmax is Ellipsis: vmax = None if unit is Ellipsis: unit = None x = pimms.mag(x) if unit is None else pimms.mag(x, unit) if name is not None and name.startswith('log_'): emn = np.exp(vmin) x = np.log(x + emn) vmin = np.nanmin(x) if vmin is None else vmin vmax = np.nanmax(x) if vmax is None else vmax return zdivide(x - vmin, vmax - vmin, null=np.nan)
Example 15
Project: pymoo Author: msu-coinlab File: high_tradeoff.py License: Apache License 2.0 | 5 votes |
def _do(self, F, **kwargs): n, m = F.shape if self.normalize: F = normalize(F, self.ideal_point, self.nadir_point, estimate_bounds_if_none=True) neighbors_finder = NeighborFinder(F, epsilon=0.125, n_min_neigbors="auto", consider_2d=False) mu = np.full(n, - np.inf) # for each solution in the set calculate the least amount of improvement per unit deterioration for i in range(n): # for each neighbour in a specific radius of that solution neighbors = neighbors_finder.find(i) # calculate the trade-off to all neighbours diff = F[neighbors] - F[i] # calculate sacrifice and gain sacrifice = np.maximum(0, diff).sum(axis=1) gain = np.maximum(0, -diff).sum(axis=1) np.warnings.filterwarnings('ignore') tradeoff = sacrifice / gain # otherwise find the one with the smalled one mu[i] = np.nanmin(tradeoff) return find_outliers_upper_tail(mu)
Example 16
Project: NeuroKit Author: neuropsychology File: signal_findpeaks.py License: MIT License | 5 votes |
def _signal_findpeaks_distances(peaks): if len(peaks) <= 2: distances = np.full(len(peaks), np.nan) else: distances_next = np.concatenate([[np.nan], np.abs(np.diff(peaks))]) distances_prev = np.concatenate([np.abs(np.diff(peaks[::-1])), [np.nan]]) distances = np.array([np.nanmin(i) for i in list(zip(distances_next, distances_prev))]) return distances
Example 17
Project: NeuroKit Author: neuropsychology File: rescale.py License: MIT License | 5 votes |
def _rescale(data, to=[0, 1]): return (to[1] - to[0]) / (np.nanmax(data) - np.nanmin(data)) * (data - np.nanmin(data)) + to[0]
Example 18
Project: connecting_the_dots Author: autonomousvision File: plt.py License: MIT License | 5 votes |
def color_map(im_, cmap='viridis', vmin=None, vmax=None): cm = plt.get_cmap(cmap) im = im_.copy() if vmin is None: vmin = np.nanmin(im) if vmax is None: vmax = np.nanmax(im) mask = np.logical_not(np.isfinite(im)) im[mask] = vmin im = (im.clip(vmin, vmax) - vmin) / (vmax - vmin) im = cm(im) im = im[...,:3] for c in range(3): im[mask, c] = 1 return im
Example 19
Project: connecting_the_dots Author: autonomousvision File: exp_synphge.py License: MIT License | 5 votes |
def write_img(self, out_path, es, gt, im, ma): logging.info(f'write img {out_path}') u_pos, _ = np.meshgrid(range(es.shape[1]), range(es.shape[0])) diff = np.abs(es - gt) vmin, vmax = np.nanmin(gt), np.nanmax(gt) vmin = vmin - 0.2*(vmax-vmin) vmax = vmax + 0.2*(vmax-vmin) pattern_proj = self.pattern_proj.to('cpu').numpy()[0,0] im_orig = self.data['im0'].detach().to('cpu').numpy()[0,0,0] pattern_diff = np.abs(im_orig - pattern_proj) fig = plt.figure(figsize=(16,16)) es0 = co.cmap.color_depth_map(es[0], scale=vmax) gt0 = co.cmap.color_depth_map(gt[0], scale=vmax) diff0 = co.cmap.color_error_image(diff[0], BGR=True) # plot disparities, ground truth disparity is shown only for reference ax = plt.subplot(3,3,1); plt.imshow(es0[...,[2,1,0]]); plt.xticks([]); plt.yticks([]); ax.set_title(f'F0 Disparity Est. {es0.min():.4f}/{es0.max():.4f}') ax = plt.subplot(3,3,2); plt.imshow(gt0[...,[2,1,0]]); plt.xticks([]); plt.yticks([]); ax.set_title(f'F0 Disparity GT {np.nanmin(gt0):.4f}/{np.nanmax(gt0):.4f}') ax = plt.subplot(3,3,3); plt.imshow(diff0[...,[2,1,0]]); plt.xticks([]); plt.yticks([]); ax.set_title(f'F0 Disparity Err. {diff0.mean():.5f}') # plot disparities of the second frame in the track if exists if es.shape[0]>=2: es1 = co.cmap.color_depth_map(es[1], scale=vmax) gt1 = co.cmap.color_depth_map(gt[1], scale=vmax) diff1 = co.cmap.color_error_image(diff[1], BGR=True) ax = plt.subplot(3,3,4); plt.imshow(es1[...,[2,1,0]]); plt.xticks([]); plt.yticks([]); ax.set_title(f'F1 Disparity Est. {es1.min():.4f}/{es1.max():.4f}') ax = plt.subplot(3,3,5); plt.imshow(gt1[...,[2,1,0]]); plt.xticks([]); plt.yticks([]); ax.set_title(f'F1 Disparity GT {np.nanmin(gt1):.4f}/{np.nanmax(gt1):.4f}') ax = plt.subplot(3,3,6); plt.imshow(diff1[...,[2,1,0]]); plt.xticks([]); plt.yticks([]); ax.set_title(f'F1 Disparity Err. {diff1.mean():.5f}') # plot normalized IR inputs ax = plt.subplot(3,3,7); plt.imshow(im[0], vmin=im.min(), vmax=im.max(), cmap='gray'); plt.xticks([]); plt.yticks([]); ax.set_title(f'F0 IR input {im[0].mean():.5f}/{im[0].std():.5f}') if es.shape[0]>=2: ax = plt.subplot(3,3,8); plt.imshow(im[1], vmin=im.min(), vmax=im.max(), cmap='gray'); plt.xticks([]); plt.yticks([]); ax.set_title(f'F1 IR input {im[1].mean():.5f}/{im[1].std():.5f}') plt.tight_layout() plt.savefig(str(out_path)) plt.close(fig)
Example 20
Project: yatsm Author: ceholden File: longtermmean.py License: MIT License | 5 votes |
def halfmax(x): """ Return index of the observation closest to the half of some data Assumes that data are scaled between [0, 1] and half-max is 0.5 Args: x (np.ndarray): a one dimensional vector Returns: int: the index of the observation closest to the half-max of the data """ return np.argmin(np.abs( (x - np.nanmin(x)) / (np.nanmax(x) - np.nanmin(x)) - 0.5))
Example 21
Project: recruit Author: Frank-qlu File: test_interaction.py License: Apache License 2.0 | 5 votes |
def test_nanfunctions_matrices(): # Check that it works and that type and # shape are preserved # 2018-04-29: moved here from core.tests.test_nanfunctions mat = np.matrix(np.eye(3)) for f in [np.nanmin, np.nanmax]: res = f(mat, axis=0) assert_(isinstance(res, np.matrix)) assert_(res.shape == (1, 3)) res = f(mat, axis=1) assert_(isinstance(res, np.matrix)) assert_(res.shape == (3, 1)) res = f(mat) assert_(np.isscalar(res)) # check that rows of nan are dealt with for subclasses (#4628) mat[1] = np.nan for f in [np.nanmin, np.nanmax]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') res = f(mat, axis=0) assert_(isinstance(res, np.matrix)) assert_(not np.any(np.isnan(res))) assert_(len(w) == 0) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') res = f(mat, axis=1) assert_(isinstance(res, np.matrix)) assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0]) and not np.isnan(res[2, 0])) assert_(len(w) == 1, 'no warning raised') assert_(issubclass(w[0].category, RuntimeWarning)) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') res = f(mat) assert_(np.isscalar(res)) assert_(res != np.nan) assert_(len(w) == 0)
Example 22
Project: recruit Author: Frank-qlu File: test_nanfunctions.py License: Apache License 2.0 | 5 votes |
def test_masked(self): mat = np.ma.fix_invalid(_ndat) msk = mat._mask.copy() for f in [np.nanmin]: res = f(mat, axis=1) tgt = f(_ndat, axis=1) assert_equal(res, tgt) assert_equal(mat._mask, msk) assert_(not np.isinf(mat).any())
Example 23
Project: recruit Author: Frank-qlu File: test_nanfunctions.py License: Apache License 2.0 | 5 votes |
def test_object_array(self): arr = np.array([[1.0, 2.0], [np.nan, 4.0], [np.nan, np.nan]], dtype=object) assert_equal(np.nanmin(arr), 1.0) assert_equal(np.nanmin(arr, axis=0), [1.0, 2.0]) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') # assert_equal does not work on object arrays of nan assert_equal(list(np.nanmin(arr, axis=1)), [1.0, 4.0, np.nan]) assert_(len(w) == 1, 'no warning raised') assert_(issubclass(w[0].category, RuntimeWarning))
Example 24
Project: recruit Author: Frank-qlu File: test_nanfunctions.py License: Apache License 2.0 | 5 votes |
def test_nanmin(self): tgt = np.min(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanmin(mat), tgt)
Example 25
Project: recruit Author: Frank-qlu File: _core.py License: Apache License 2.0 | 5 votes |
def _get_ind(self, y): if self.ind is None: # np.nanmax() and np.nanmin() ignores the missing values sample_range = np.nanmax(y) - np.nanmin(y) ind = np.linspace(np.nanmin(y) - 0.5 * sample_range, np.nanmax(y) + 0.5 * sample_range, 1000) elif is_integer(self.ind): sample_range = np.nanmax(y) - np.nanmin(y) ind = np.linspace(np.nanmin(y) - 0.5 * sample_range, np.nanmax(y) + 0.5 * sample_range, self.ind) else: ind = self.ind return ind
Example 26
Project: recruit Author: Frank-qlu File: test_series.py License: Apache License 2.0 | 5 votes |
def test_unsorted_index_xlim(self): ser = Series([0., 1., np.nan, 3., 4., 5., 6.], index=[1., 0., 3., 2., np.nan, 3., 2.]) _, ax = self.plt.subplots() ax = ser.plot(ax=ax) xmin, xmax = ax.get_xlim() lines = ax.get_lines() assert xmin <= np.nanmin(lines[0].get_data(orig=False)[0]) assert xmax >= np.nanmax(lines[0].get_data(orig=False)[0])
Example 27
Project: recruit Author: Frank-qlu File: test_nanops.py License: Apache License 2.0 | 5 votes |
def test_nanmin(self): with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", RuntimeWarning) func = partial(self._minmax_wrap, func=np.min) self.check_funs(nanops.nanmin, func, allow_str=False, allow_obj=False)
Example 28
Project: recruit Author: Frank-qlu File: base.py License: Apache License 2.0 | 5 votes |
def min(self, axis=None, skipna=True): """ Return the minimum value of the Index. Parameters ---------- axis : {None} Dummy argument for consistency with Series skipna : bool, default True Returns ------- scalar Minimum value. See Also -------- Index.max : Return the maximum value of the object. Series.min : Return the minimum value in a Series. DataFrame.min : Return the minimum values in a DataFrame. Examples -------- >>> idx = pd.Index([3, 2, 1]) >>> idx.min() 1 >>> idx = pd.Index(['c', 'b', 'a']) >>> idx.min() 'a' For a MultiIndex, the minimum is determined lexicographically. >>> idx = pd.MultiIndex.from_product([('a', 'b'), (2, 1)]) >>> idx.min() ('a', 1) """ nv.validate_minmax_axis(axis) return nanops.nanmin(self._values, skipna=skipna)
Example 29
Project: cgpm Author: probcomp File: render.py License: Apache License 2.0 | 5 votes |
def nanptp(array, axis=0): """Returns peak-to-peak distance of an array ignoring nan values.""" ptp = np.nanmax(array, axis=axis) - np.nanmin(array, axis=0) ptp_without_null = [i if i != 0 else 1. for i in ptp] return ptp_without_null
Example 30
Project: cgpm Author: probcomp File: render.py License: Apache License 2.0 | 5 votes |
def nannormalize(data): """Normalizes data across the columns, ignoring nan values.""" return (data - np.nanmin(data, axis=0)) / nanptp(data, axis=0)