Python numpy.alen() Examples
The following are 30 code examples for showing how to use numpy.alen(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: FitML Author: FitMachineLearning File: ROBOTIC_Template_Experimental_v0.1.py License: MIT License | 6 votes |
def add_noise_to_model(targetModel,largeNoise = False): #noisy_model = keras.models.clone_model(action_predictor_model) #noisy_model.set_weights(action_predictor_model.get_weights()) #print("Adding Noise to actor") #largeNoise = last_game_average < memoryR.mean() sz = len(noisy_model.layers) #if largeNoise: # print("Setting Large Noise!") for k in range(sz): w = targetModel.layers[k].get_weights() if np.alen(w) >0 : #print("k==>",k) w[0] = add_noise(w[0],largeNoise) targetModel.layers[k].set_weights(w) return targetModel
Example 2
Project: FitML Author: FitMachineLearning File: ROBOTIC_Template_Experimental_v0.1.py License: MIT License | 6 votes |
def reset_noisy_model(): sz = len(noisy_model.layers) #if largeNoise: # print("Setting Large Noise!") for k in range(sz): w = noisy_model.layers[k].get_weights() apW = action_predictor_model.layers[k].get_weights() if np.alen(w) >0: w[0] = reset_noisy_model_weights_to_apWeights(apW[0]) noisy_model.layers[k].set_weights(w) #print("w",w) #print("apW",apW) # --- Parameter Noising
Example 3
Project: FitML Author: FitMachineLearning File: Walker2D.v2.0.py License: MIT License | 6 votes |
def add_noise_to_model(largeNoise = False): #noisy_model = keras.models.clone_model(action_predictor_model) #noisy_model.set_weights(action_predictor_model.get_weights()) #print("Adding Noise to actor") #largeNoise = last_game_average < memoryR.mean() sz = len(noisy_model.layers) #if largeNoise: # print("Setting Large Noise!") for k in range(sz): w = noisy_model.layers[k].get_weights() #print("w ==>", w) if np.alen(w) >0: w[0] = add_noise_simple(w[0],largeNoise) noisy_model.layers[k].set_weights(w) return noisy_model # --- Parameter Noising
Example 4
Project: FitML Author: FitMachineLearning File: AntBulletEnv.py License: MIT License | 6 votes |
def add_noise_to_model(targetModel,largeNoise = False): #noisy_model = keras.models.clone_model(action_predictor_model) #noisy_model.set_weights(action_predictor_model.get_weights()) #print("Adding Noise to actor") #largeNoise = last_game_average < memoryR.mean() sz = len(noisy_model.layers) #if largeNoise: # print("Setting Large Noise!") for k in range(sz): w = targetModel.layers[k].get_weights() if np.alen(w) >0 : #print("k==>",k) if USE_GAUSSIAN_NOISE: w[0] = add_gaussian_noise(w[0],big_sigma,largeNoise) else: w[0] = add_noise_simple(w[0],largeNoise) targetModel.layers[k].set_weights(w) return targetModel
Example 5
Project: FitML Author: FitMachineLearning File: BipedalWalker_v3.0.py License: MIT License | 6 votes |
def add_noise_to_model(targetModel,largeNoise = False): #noisy_model = keras.models.clone_model(action_predictor_model) #noisy_model.set_weights(action_predictor_model.get_weights()) #print("Adding Noise to actor") #largeNoise = last_game_average < memoryR.mean() sz = len(noisy_model.layers) #if largeNoise: # print("Setting Large Noise!") for k in range(sz): w = targetModel.layers[k].get_weights() if np.alen(w) >0 : #print("k==>",k) if USE_GAUSSIAN_NOISE: w[0] = add_gaussian_noise(w[0],big_sigma,largeNoise) else: w[0] = add_noise_simple(w[0],largeNoise) targetModel.layers[k].set_weights(w) return targetModel
Example 6
Project: FitML Author: FitMachineLearning File: Hopper_v1.0.py License: MIT License | 6 votes |
def add_noise_to_model(largeNoise = False): #noisy_model = keras.models.clone_model(action_predictor_model) #noisy_model.set_weights(action_predictor_model.get_weights()) #print("Adding Noise to actor") #largeNoise = last_game_average < memoryR.mean() sz = len(noisy_model.layers) #if largeNoise: # print("Setting Large Noise!") for k in range(sz): w = noisy_model.layers[k].get_weights() #print("w ==>", w) if np.alen(w) >0: w[0] = add_noise_simple(w[0],largeNoise) noisy_model.layers[k].set_weights(w) return noisy_model # --- Parameter Noising
Example 7
Project: FitML Author: FitMachineLearning File: MainAlgo_PR_v1.0.py License: MIT License | 6 votes |
def add_noise_to_model(targetModel,largeNoise = False): #noisy_model = keras.models.clone_model(action_predictor_model) #noisy_model.set_weights(action_predictor_model.get_weights()) #print("Adding Noise to actor") #largeNoise = last_game_average < memoryR.mean() sz = len(noisy_model.layers) #if largeNoise: # print("Setting Large Noise!") for k in range(sz): w = targetModel.layers[k].get_weights() if np.alen(w) >0 : #print("k==>",k) if USE_GAUSSIAN_NOISE: w[0] = add_gaussian_noise(w[0],big_sigma,largeNoise) else: w[0] = add_noise_simple(w[0],largeNoise) targetModel.layers[k].set_weights(w) return targetModel
Example 8
Project: FitML Author: FitMachineLearning File: RoboschoolHalfCheetah_v1.py License: MIT License | 6 votes |
def add_noise_to_model(targetModel,largeNoise = False): #noisy_model = keras.models.clone_model(action_predictor_model) #noisy_model.set_weights(action_predictor_model.get_weights()) #print("Adding Noise to actor") #largeNoise = last_game_average < memoryR.mean() sz = len(noisy_model.layers) #if largeNoise: # print("Setting Large Noise!") for k in range(sz): w = targetModel.layers[k].get_weights() if np.alen(w) >0 : #print("k==>",k) w[0] = add_noise(w[0],largeNoise) targetModel.layers[k].set_weights(w) return targetModel
Example 9
Project: FitML Author: FitMachineLearning File: _MainAlgo_v4.2.py License: MIT License | 6 votes |
def add_noise_to_model(targetModel,largeNoise = False): #noisy_model = keras.models.clone_model(action_predictor_model) #noisy_model.set_weights(action_predictor_model.get_weights()) #print("Adding Noise to actor") #largeNoise = last_game_average < memoryR.mean() sz = len(noisy_model.layers) #if largeNoise: # print("Setting Large Noise!") for k in range(sz): w = targetModel.layers[k].get_weights() if np.alen(w) >0 : #print("k==>",k) if USE_GAUSSIAN_NOISE: w[0] = add_gaussian_noise(w[0],big_sigma,largeNoise) else: w[0] = add_noise_simple(w[0],largeNoise) targetModel.layers[k].set_weights(w) return targetModel
Example 10
Project: FitML Author: FitMachineLearning File: Main_algo.py License: MIT License | 6 votes |
def add_noise_to_model(targetModel,largeNoise = False): #noisy_model = keras.models.clone_model(action_predictor_model) #noisy_model.set_weights(action_predictor_model.get_weights()) #print("Adding Noise to actor") #largeNoise = last_game_average < memoryR.mean() sz = len(noisy_model.layers) #if largeNoise: # print("Setting Large Noise!") for k in range(sz): w = targetModel.layers[k].get_weights() if np.alen(w) >0 : #print("k==>",k) w[0] = add_noise(w[0],largeNoise) targetModel.layers[k].set_weights(w) return targetModel
Example 11
Project: FitML Author: FitMachineLearning File: Main_algo.py License: MIT License | 6 votes |
def reset_noisy_model(): sz = len(noisy_model.layers) #if largeNoise: # print("Setting Large Noise!") for k in range(sz): w = noisy_model.layers[k].get_weights() apW = action_predictor_model.layers[k].get_weights() if np.alen(w) >0: w[0] = reset_noisy_model_weights_to_apWeights(apW[0]) noisy_model.layers[k].set_weights(w) #print("w",w) #print("apW",apW) # --- Parameter Noising
Example 12
Project: FitML Author: FitMachineLearning File: LunarLanderContinuous_v1.0.py License: MIT License | 6 votes |
def add_noise_to_model(targetModel,largeNoise = False): #noisy_model = keras.models.clone_model(action_predictor_model) #noisy_model.set_weights(action_predictor_model.get_weights()) #print("Adding Noise to actor") #largeNoise = last_game_average < memoryR.mean() sz = len(noisy_model.layers) #if largeNoise: # print("Setting Large Noise!") for k in range(sz): w = targetModel.layers[k].get_weights() if np.alen(w) >0 : #print("k==>",k) w[0] = add_noise(w[0],largeNoise) targetModel.layers[k].set_weights(w) return targetModel
Example 13
Project: FitML Author: FitMachineLearning File: LunarLanderContinuous_v1.0.py License: MIT License | 6 votes |
def reset_noisy_model(): sz = len(noisy_model.layers) #if largeNoise: # print("Setting Large Noise!") for k in range(sz): w = noisy_model.layers[k].get_weights() apW = action_predictor_model.layers[k].get_weights() if np.alen(w) >0: w[0] = reset_noisy_model_weights_to_apWeights(apW[0]) noisy_model.layers[k].set_weights(w) #print("w",w) #print("apW",apW) # --- Parameter Noising
Example 14
Project: recruit Author: Frank-qlu File: fromnumeric.py License: Apache License 2.0 | 5 votes |
def alen(a): """ Return the length of the first dimension of the input array. Parameters ---------- a : array_like Input array. Returns ------- alen : int Length of the first dimension of `a`. See Also -------- shape, size Examples -------- >>> a = np.zeros((7,4,5)) >>> a.shape[0] 7 >>> np.alen(a) 7 """ try: return len(a) except TypeError: return len(array(a, ndmin=1))
Example 15
Project: lambda-packs Author: ryfeus File: fromnumeric.py License: MIT License | 5 votes |
def alen(a): """ Return the length of the first dimension of the input array. Parameters ---------- a : array_like Input array. Returns ------- alen : int Length of the first dimension of `a`. See Also -------- shape, size Examples -------- >>> a = np.zeros((7,4,5)) >>> a.shape[0] 7 >>> np.alen(a) 7 """ try: return len(a) except TypeError: return len(array(a, ndmin=1))
Example 16
Project: auto-alt-text-lambda-api Author: abhisuri97 File: fromnumeric.py License: MIT License | 5 votes |
def alen(a): """ Return the length of the first dimension of the input array. Parameters ---------- a : array_like Input array. Returns ------- alen : int Length of the first dimension of `a`. See Also -------- shape, size Examples -------- >>> a = np.zeros((7,4,5)) >>> a.shape[0] 7 >>> np.alen(a) 7 """ try: return len(a) except TypeError: return len(array(a, ndmin=1))
Example 17
Project: vnpy_crypto Author: birforce File: fromnumeric.py License: MIT License | 5 votes |
def alen(a): """ Return the length of the first dimension of the input array. Parameters ---------- a : array_like Input array. Returns ------- alen : int Length of the first dimension of `a`. See Also -------- shape, size Examples -------- >>> a = np.zeros((7,4,5)) >>> a.shape[0] 7 >>> np.alen(a) 7 """ try: return len(a) except TypeError: return len(array(a, ndmin=1))
Example 18
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: fromnumeric.py License: MIT License | 5 votes |
def alen(a): """ Return the length of the first dimension of the input array. Parameters ---------- a : array_like Input array. Returns ------- alen : int Length of the first dimension of `a`. See Also -------- shape, size Examples -------- >>> a = np.zeros((7,4,5)) >>> a.shape[0] 7 >>> np.alen(a) 7 """ try: return len(a) except TypeError: return len(array(a, ndmin=1))
Example 19
Project: PYRO-NN Author: csyben File: filters.py License: Apache License 2.0 | 5 votes |
def ramp_2D(geometry): detector_width = geometry.detector_shape[np.alen(geometry.detector_shape) - 1] filter = [ np.reshape( ramp(detector_width), (1, detector_width) ) for i in range(0, geometry.number_of_projections) ] filter = np.concatenate(filter) return filter
Example 20
Project: PYRO-NN Author: csyben File: filters.py License: Apache License 2.0 | 5 votes |
def ramp_3D(geometry): detector_width = geometry.detector_shape[np.alen(geometry.detector_shape) - 1] filter = [ np.reshape( ramp(detector_width), (1, 1, detector_width) ) for i in range(0, geometry.number_of_projections) ] filter = np.concatenate(filter) return filter
Example 21
Project: PYRO-NN Author: csyben File: filters.py License: Apache License 2.0 | 5 votes |
def ram_lak_2D(geometry): detector_width = geometry.detector_shape[np.alen(geometry.detector_shape) - 1] detector_spacing_width = geometry.detector_spacing[np.alen(geometry.detector_spacing) - 1] filter = [ np.reshape( ram_lak(detector_width, detector_spacing_width), (1, detector_width) ) for i in range(0, geometry.number_of_projections) ] filter = np.concatenate(filter) return filter
Example 22
Project: PYRO-NN Author: csyben File: filters.py License: Apache License 2.0 | 5 votes |
def ram_lak_3D(geometry): detector_width = geometry.detector_shape[np.alen(geometry.detector_shape) - 1] detector_spacing_width = geometry.detector_spacing[np.alen(geometry.detector_spacing) - 1] filter = [ np.reshape( ram_lak(detector_width, detector_spacing_width), (1, 1, detector_width) ) for i in range(0, geometry.number_of_projections) ] filter = np.concatenate(filter) return (1 / 1.0) * filter
Example 23
Project: GraphicDesignPatternByPython Author: Relph1119 File: fromnumeric.py License: MIT License | 5 votes |
def alen(a): """ Return the length of the first dimension of the input array. Parameters ---------- a : array_like Input array. Returns ------- alen : int Length of the first dimension of `a`. See Also -------- shape, size Examples -------- >>> a = np.zeros((7,4,5)) >>> a.shape[0] 7 >>> np.alen(a) 7 """ try: return len(a) except TypeError: return len(array(a, ndmin=1))
Example 24
Project: predictive-maintenance-using-machine-learning Author: awslabs File: fromnumeric.py License: Apache License 2.0 | 5 votes |
def alen(a): """ Return the length of the first dimension of the input array. Parameters ---------- a : array_like Input array. Returns ------- alen : int Length of the first dimension of `a`. See Also -------- shape, size Examples -------- >>> a = np.zeros((7,4,5)) >>> a.shape[0] 7 >>> np.alen(a) 7 """ try: return len(a) except TypeError: return len(array(a, ndmin=1))
Example 25
Project: pySINDy Author: luckystarufo File: fromnumeric.py License: MIT License | 5 votes |
def alen(a): """ Return the length of the first dimension of the input array. Parameters ---------- a : array_like Input array. Returns ------- alen : int Length of the first dimension of `a`. See Also -------- shape, size Examples -------- >>> a = np.zeros((7,4,5)) >>> a.shape[0] 7 >>> np.alen(a) 7 """ try: return len(a) except TypeError: return len(array(a, ndmin=1))
Example 26
Project: FitML Author: FitMachineLearning File: ROBOTIC_Template_Experimental_v0.1.py License: MIT License | 5 votes |
def scale_weights(memR,memW): rmax = memR.max() rmin = memR.min() reward_range = math.fabs(rmax - rmin ) if reward_range == 0: reward_range = 10 for i in range(np.alen(memR)): memW[i][0] = math.fabs(memR[i][0]-rmin)/reward_range memW[i][0] = max(memW[i][0],0.001) #print("memW %5.2f reward %5.2f rmax %5.2f rmin %5.2f "%(memW[i][0],memR[i][0],rmax,rmin)) #print("memW",memW) return memW
Example 27
Project: FitML Author: FitMachineLearning File: ROBOTIC_Template_Experimental_v0.1.py License: MIT License | 5 votes |
def pr_actor_experience_replay(memSA,memR,memS,memA,memW,num_epochs=1): tSA = (memSA) tR = (memR) tX = (memS) tY = (memA) tW = (memW) tX_train = np.zeros(shape=(1,num_env_variables)) tY_train = np.zeros(shape=(1,num_env_actions)) for i in range(np.alen(tR)): pr = predictTotalRewards(tX[i],GetRememberedOptimalPolicy(tX[i])) #print ("tR[i]",tR[i],"pr",pr) d = math.fabs( memoryR.max() - pr) tW[i]= 0.0000000000000005 if (tR[i]>pr): tW[i]=0.15 if (tR[i]>pr+d/2): tW[i] = 1 if tW[i]> np.random.rand(1): tX_train = np.vstack((tX_train,tX[i])) tY_train = np.vstack((tY_train,tY[i])) tX_train = tX_train[1:] tY_train = tY_train[1:] print("%8d were better After removing first element"%np.alen(tX_train)) if np.alen(tX_train)>0: action_predictor_model.fit(tX_train,tY_train, batch_size=mini_batch, nb_epoch=num_epochs,verbose=0)
Example 28
Project: FitML Author: FitMachineLearning File: ROBOTIC_Template_Experimental_v0.1.py License: MIT License | 5 votes |
def train_noisy_actor(): tX = (memoryS) tY = (memoryA) tW = (memoryW) train_A = np.random.randint(tY.shape[0],size=int(min(experience_replay_size,np.alen(tY) ))) tX = tX[train_A,:] tY = tY[train_A,:] tW = tW[train_A,:] noisy_model.fit(tX,tY, batch_size=mini_batch, nb_epoch=training_epochs,verbose=0)
Example 29
Project: FitML Author: FitMachineLearning File: Walker2D.v2.0.py License: MIT License | 5 votes |
def scale_weights(memR,memW): rmax = memR.max() rmin = memR.min() reward_range = math.fabs(rmax - rmin ) if reward_range == 0: reward_range = 10 for i in range(np.alen(memR)): memW[i][0] = math.fabs(memR[i][0]-rmin)/reward_range memW[i][0] = max(memW[i][0],0.001) #print("memW %5.2f reward %5.2f rmax %5.2f rmin %5.2f "%(memW[i][0],memR[i][0],rmax,rmin)) #print("memW",memW) return memW
Example 30
Project: FitML Author: FitMachineLearning File: Walker2D.v2.0.py License: MIT License | 5 votes |
def train_noisy_actor(): tX = (memoryS) tY = (memoryA) tW = (memoryW) train_A = np.random.randint(tY.shape[0],size=int(min(experience_replay_size,np.alen(tY) ))) tX = tX[train_A,:] tY = tY[train_A,:] tW = tW[train_A,:] noisy_model.fit(tX,tY, batch_size=mini_batch, nb_epoch=training_epochs,verbose=0)