Python numpy.logaddexp2() Examples
The following are 30 code examples for showing how to use numpy.logaddexp2(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: recruit Author: Frank-qlu File: test_ufunc.py License: Apache License 2.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example 2
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 3
Project: vnpy_crypto Author: birforce File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 4
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example 5
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 6
Project: predictive-maintenance-using-machine-learning Author: awslabs File: test_ufunc.py License: Apache License 2.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example 7
Project: pySINDy Author: luckystarufo File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 8
Project: mxnet-lambda Author: awslabs File: test_ufunc.py License: Apache License 2.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 9
Project: elasticintel Author: securityclippy File: test_ufunc.py License: GNU General Public License v3.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 10
Project: coffeegrindsize Author: jgagneastro File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example 11
Project: Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda Author: PacktPublishing File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 12
Project: twitter-stock-recommendation Author: alvarobartt File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 13
Project: keras-lambda Author: sunilmallya File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 14
Project: razzy-spinner Author: rafasashi File: hmm.py License: GNU General Public License v3.0 | 5 votes |
def _baum_welch_step(self, sequence, model, symbol_to_number): N = len(model._states) M = len(model._symbols) T = len(sequence) # compute forward and backward probabilities alpha = model._forward_probability(sequence) beta = model._backward_probability(sequence) # find the log probability of the sequence lpk = logsumexp2(alpha[T-1]) A_numer = _ninf_array((N, N)) B_numer = _ninf_array((N, M)) A_denom = _ninf_array(N) B_denom = _ninf_array(N) transitions_logprob = model._transitions_matrix().T for t in range(T): symbol = sequence[t][_TEXT] # not found? FIXME next_symbol = None if t < T - 1: next_symbol = sequence[t+1][_TEXT] # not found? FIXME xi = symbol_to_number[symbol] next_outputs_logprob = model._outputs_vector(next_symbol) alpha_plus_beta = alpha[t] + beta[t] if t < T - 1: numer_add = transitions_logprob + next_outputs_logprob + \ beta[t+1] + alpha[t].reshape(N, 1) A_numer = np.logaddexp2(A_numer, numer_add) A_denom = np.logaddexp2(A_denom, alpha_plus_beta) else: B_denom = np.logaddexp2(A_denom, alpha_plus_beta) B_numer[:,xi] = np.logaddexp2(B_numer[:,xi], alpha_plus_beta) return lpk, A_numer, A_denom, B_numer, B_denom
Example 15
Project: recruit Author: Frank-qlu File: test_umath.py License: Apache License 2.0 | 5 votes |
def test_logaddexp2_values(self): x = [1, 2, 3, 4, 5] y = [5, 4, 3, 2, 1] z = [6, 6, 6, 6, 6] for dt, dec_ in zip(['f', 'd', 'g'], [6, 15, 15]): xf = np.log2(np.array(x, dtype=dt)) yf = np.log2(np.array(y, dtype=dt)) zf = np.log2(np.array(z, dtype=dt)) assert_almost_equal(np.logaddexp2(xf, yf), zf, decimal=dec_)
Example 16
Project: recruit Author: Frank-qlu File: test_umath.py License: Apache License 2.0 | 5 votes |
def test_logaddexp2_range(self): x = [1000000, -1000000, 1000200, -1000200] y = [1000200, -1000200, 1000000, -1000000] z = [1000200, -1000000, 1000200, -1000000] for dt in ['f', 'd', 'g']: logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_almost_equal(np.logaddexp2(logxf, logyf), logzf)
Example 17
Project: recruit Author: Frank-qlu File: test_umath.py License: Apache License 2.0 | 5 votes |
def test_inf(self): inf = np.inf x = [inf, -inf, inf, -inf, inf, 1, -inf, 1] y = [inf, inf, -inf, -inf, 1, inf, 1, -inf] z = [inf, inf, inf, -inf, inf, inf, 1, 1] with np.errstate(invalid='raise'): for dt in ['f', 'd', 'g']: logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_equal(np.logaddexp2(logxf, logyf), logzf)
Example 18
Project: recruit Author: Frank-qlu File: test_umath.py License: Apache License 2.0 | 5 votes |
def test_nan(self): assert_(np.isnan(np.logaddexp2(np.nan, np.inf))) assert_(np.isnan(np.logaddexp2(np.inf, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, 0))) assert_(np.isnan(np.logaddexp2(0, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, np.nan)))
Example 19
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_umath.py License: MIT License | 5 votes |
def test_logaddexp2_values(self): x = [1, 2, 3, 4, 5] y = [5, 4, 3, 2, 1] z = [6, 6, 6, 6, 6] for dt, dec_ in zip(['f', 'd', 'g'], [6, 15, 15]): xf = np.log2(np.array(x, dtype=dt)) yf = np.log2(np.array(y, dtype=dt)) zf = np.log2(np.array(z, dtype=dt)) assert_almost_equal(np.logaddexp2(xf, yf), zf, decimal=dec_)
Example 20
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_umath.py License: MIT License | 5 votes |
def test_logaddexp2_range(self): x = [1000000, -1000000, 1000200, -1000200] y = [1000200, -1000200, 1000000, -1000000] z = [1000200, -1000000, 1000200, -1000000] for dt in ['f', 'd', 'g']: logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_almost_equal(np.logaddexp2(logxf, logyf), logzf)
Example 21
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_umath.py License: MIT License | 5 votes |
def test_inf(self): inf = np.inf x = [inf, -inf, inf, -inf, inf, 1, -inf, 1] y = [inf, inf, -inf, -inf, 1, inf, 1, -inf] z = [inf, inf, inf, -inf, inf, inf, 1, 1] with np.errstate(invalid='raise'): for dt in ['f', 'd', 'g']: logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_equal(np.logaddexp2(logxf, logyf), logzf)
Example 22
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_umath.py License: MIT License | 5 votes |
def test_nan(self): assert_(np.isnan(np.logaddexp2(np.nan, np.inf))) assert_(np.isnan(np.logaddexp2(np.inf, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, 0))) assert_(np.isnan(np.logaddexp2(0, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, np.nan)))
Example 23
Project: vnpy_crypto Author: birforce File: test_umath.py License: MIT License | 5 votes |
def test_logaddexp2_values(self): x = [1, 2, 3, 4, 5] y = [5, 4, 3, 2, 1] z = [6, 6, 6, 6, 6] for dt, dec_ in zip(['f', 'd', 'g'], [6, 15, 15]): xf = np.log2(np.array(x, dtype=dt)) yf = np.log2(np.array(y, dtype=dt)) zf = np.log2(np.array(z, dtype=dt)) assert_almost_equal(np.logaddexp2(xf, yf), zf, decimal=dec_)
Example 24
Project: vnpy_crypto Author: birforce File: test_umath.py License: MIT License | 5 votes |
def test_logaddexp2_range(self): x = [1000000, -1000000, 1000200, -1000200] y = [1000200, -1000200, 1000000, -1000000] z = [1000200, -1000000, 1000200, -1000000] for dt in ['f', 'd', 'g']: logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_almost_equal(np.logaddexp2(logxf, logyf), logzf)
Example 25
Project: vnpy_crypto Author: birforce File: test_umath.py License: MIT License | 5 votes |
def test_inf(self): inf = np.inf x = [inf, -inf, inf, -inf, inf, 1, -inf, 1] y = [inf, inf, -inf, -inf, 1, inf, 1, -inf] z = [inf, inf, inf, -inf, inf, inf, 1, 1] with np.errstate(invalid='raise'): for dt in ['f', 'd', 'g']: logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_equal(np.logaddexp2(logxf, logyf), logzf)
Example 26
Project: vnpy_crypto Author: birforce File: test_umath.py License: MIT License | 5 votes |
def test_nan(self): assert_(np.isnan(np.logaddexp2(np.nan, np.inf))) assert_(np.isnan(np.logaddexp2(np.inf, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, 0))) assert_(np.isnan(np.logaddexp2(0, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, np.nan)))
Example 27
Project: Computable Author: ktraunmueller File: test_umath.py License: MIT License | 5 votes |
def test_logaddexp2_values(self) : x = [1, 2, 3, 4, 5] y = [5, 4, 3, 2, 1] z = [6, 6, 6, 6, 6] for dt, dec in zip(['f', 'd', 'g'], [6, 15, 15]) : xf = np.log2(np.array(x, dtype=dt)) yf = np.log2(np.array(y, dtype=dt)) zf = np.log2(np.array(z, dtype=dt)) assert_almost_equal(np.logaddexp2(xf, yf), zf, decimal=dec)
Example 28
Project: Computable Author: ktraunmueller File: test_umath.py License: MIT License | 5 votes |
def test_logaddexp2_range(self) : x = [1000000, -1000000, 1000200, -1000200] y = [1000200, -1000200, 1000000, -1000000] z = [1000200, -1000000, 1000200, -1000000] for dt in ['f', 'd', 'g'] : logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_almost_equal(np.logaddexp2(logxf, logyf), logzf)
Example 29
Project: Computable Author: ktraunmueller File: test_umath.py License: MIT License | 5 votes |
def test_inf(self) : inf = np.inf x = [inf, -inf, inf, -inf, inf, 1, -inf, 1] y = [inf, inf, -inf, -inf, 1, inf, 1, -inf] z = [inf, inf, inf, -inf, inf, inf, 1, 1] with np.errstate(invalid='ignore'): for dt in ['f', 'd', 'g'] : logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_equal(np.logaddexp2(logxf, logyf), logzf)
Example 30
Project: Computable Author: ktraunmueller File: test_umath.py License: MIT License | 5 votes |
def test_nan(self): assert_(np.isnan(np.logaddexp2(np.nan, np.inf))) assert_(np.isnan(np.logaddexp2(np.inf, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, 0))) assert_(np.isnan(np.logaddexp2(0, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, np.nan)))