Python numpy.atleast_1d() Examples
The following are 30 code examples for showing how to use numpy.atleast_1d(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: baseband Author: mhvk File: utils.py License: GNU General Public License v3.0 | 6 votes |
def byte_array(pattern): """Convert the pattern to a byte array. Parameters ---------- pattern : ~numpy.ndarray, bytes, int, or iterable of int Pattern to convert. If a `~numpy.ndarray` or `bytes` instance, a byte array view is taken. If an (iterable of) int, the integers need to be unsigned 32 bit and will be interpreted as little-endian. Returns ------- byte_array : `~numpy.ndarray` of byte With any elements of pattern stored in little-endian order. """ if isinstance(pattern, (np.ndarray, bytes)): # Quick turn-around for input that is OK already: return np.atleast_1d(pattern).view('u1') pattern = np.array(pattern, ndmin=1) if (pattern.dtype.kind not in 'uif' or pattern.min() < 0 or pattern.max() >= 1 << 32): raise ValueError('values have to fit in 32 bit unsigned int.') return pattern.astype('<u4').view('u1')
Example 2
Project: recruit Author: Frank-qlu File: test_linalg.py License: Apache License 2.0 | 6 votes |
def do(self, a, b, tags): d = linalg.det(a) (s, ld) = linalg.slogdet(a) if asarray(a).dtype.type in (single, double): ad = asarray(a).astype(double) else: ad = asarray(a).astype(cdouble) ev = linalg.eigvals(ad) assert_almost_equal(d, multiply.reduce(ev, axis=-1)) assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1)) s = np.atleast_1d(s) ld = np.atleast_1d(ld) m = (s != 0) assert_almost_equal(np.abs(s[m]), 1) assert_equal(ld[~m], -inf)
Example 3
Project: typhon Author: atmtools File: em.py License: MIT License | 6 votes |
def blackbody_radiance(self, T, spectral=True): """Calculate integrated radiance for blackbody at temperature T :param T: Temperature [K]. This can be either a python number, or a numpy ndarray, on a ureg quantity encompassing either. :param spectral: Parameter to control whether to return spectral radiance or radiance. See self.integrate_radiances for details. Returns quantity ndarray with blackbody radiance in desired unit. Note that this is an ndarray with dimension (1,) even if you passin a scalar. """ try: T = T.to("K") except AttributeError: T = ureg.Quantity(T, "K") T = ureg.Quantity(numpy.atleast_1d(T), T.u) # fails if T is multidimensional shp = T.shape return self.integrate_radiances( self.frequency, planck_f( self.frequency[numpy.newaxis, :], T.reshape((-1,))[:, numpy.newaxis]), spectral=spectral).reshape(shp)
Example 4
Project: buzzard Author: airware File: parameters.py License: Apache License 2.0 | 6 votes |
def normalize_channels_parameter(channels, channel_count): if channels is None: if channel_count == 1: return [0], True else: return list(range(channel_count)), False indices = np.arange(channel_count) indices = indices[channels] indices = np.atleast_1d(indices) if isinstance(channels, slice): return indices.tolist(), False channels = np.asarray(channels) if not np.issubdtype(channels.dtype, np.number): raise TypeError('`channels` should be None or int or slice or list of int') if channels.ndim == 0: assert len(indices) == 1 return indices.tolist(), True return indices.tolist(), False
Example 5
Project: mars Author: mars-project File: partition.py License: Apache License 2.0 | 6 votes |
def _validate_partition_arguments(a, kth, axis, kind, order, kw): a = astensor(a) if axis is None: a = a.flatten() axis = 0 else: axis = validate_axis(a.ndim, axis) if isinstance(kth, (Base, Entity)): kth = astensor(kth) _check_kth_dtype(kth.dtype) else: kth = np.atleast_1d(kth) kth = _validate_kth_value(kth, a.shape[axis]) if kth.ndim > 1: raise ValueError('object too deep for desired array') if kind != 'introselect': raise ValueError('{} is an unrecognized kind of select'.format(kind)) # if a is structure type and order is not None order = validate_order(a.dtype, order) need_align = kw.pop('need_align', None) if len(kw) > 0: raise TypeError('partition() got an unexpected keyword ' 'argument \'{}\''.format(next(iter(kw)))) return a, kth, axis, kind, order, need_align
Example 6
Project: lambda-packs Author: ryfeus File: filter_design.py License: MIT License | 6 votes |
def lp2lp(b, a, wo=1.0): """ Transform a lowpass filter prototype to a different frequency. Return an analog low-pass filter with cutoff frequency `wo` from an analog low-pass filter prototype with unity cutoff frequency, in transfer function ('ba') representation. """ a, b = map(atleast_1d, (a, b)) try: wo = float(wo) except TypeError: wo = float(wo[0]) d = len(a) n = len(b) M = max((d, n)) pwo = pow(wo, numpy.arange(M - 1, -1, -1)) start1 = max((n - d, 0)) start2 = max((d - n, 0)) b = b * pwo[start1] / pwo[start2:] a = a * pwo[start1] / pwo[start1:] return normalize(b, a)
Example 7
Project: lambda-packs Author: ryfeus File: minpack.py License: MIT License | 6 votes |
def _check_func(checker, argname, thefunc, x0, args, numinputs, output_shape=None): res = atleast_1d(thefunc(*((x0[:numinputs],) + args))) if (output_shape is not None) and (shape(res) != output_shape): if (output_shape[0] != 1): if len(output_shape) > 1: if output_shape[1] == 1: return shape(res) msg = "%s: there is a mismatch between the input and output " \ "shape of the '%s' argument" % (checker, argname) func_name = getattr(thefunc, '__name__', None) if func_name: msg += " '%s'." % func_name else: msg += "." msg += 'Shape should be %s but it is %s.' % (output_shape, shape(res)) raise TypeError(msg) if issubdtype(res.dtype, inexact): dt = res.dtype else: dt = dtype(float) return shape(res), dt
Example 8
Project: lambda-packs Author: ryfeus File: stats.py License: MIT License | 6 votes |
def _chk2_asarray(a, b, axis): if axis is None: a = np.ravel(a) b = np.ravel(b) outaxis = 0 else: a = np.asarray(a) b = np.asarray(b) outaxis = axis if a.ndim == 0: a = np.atleast_1d(a) if b.ndim == 0: b = np.atleast_1d(b) return a, b, outaxis
Example 9
Project: lambda-packs Author: ryfeus File: _continuous_distns.py License: MIT License | 6 votes |
def _munp(self, n, beta, m): """ Returns the n-th non-central moment of the crystalball function. """ N = 1.0 / (m/beta / (m-1) * np.exp(-beta**2 / 2.0) + _norm_pdf_C * _norm_cdf(beta)) def n_th_moment(n, beta, m): """ Returns n-th moment. Defined only if n+1 < m Function cannot broadcast due to the loop over n """ A = (m/beta)**m * np.exp(-beta**2 / 2.0) B = m/beta - beta rhs = 2**((n-1)/2.0) * sc.gamma((n+1)/2) * (1.0 + (-1)**n * sc.gammainc((n+1)/2, beta**2 / 2)) lhs = np.zeros(rhs.shape) for k in range(n + 1): lhs += sc.binom(n, k) * B**(n-k) * (-1)**k / (m - k - 1) * (m/beta)**(-m + k + 1) return A * lhs + rhs return N * _lazywhere(np.atleast_1d(n + 1 < m), (n, beta, m), np.vectorize(n_th_moment, otypes=[np.float]), np.inf)
Example 10
Project: mlearn Author: materialsvirtuallab File: calcs.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def _parse(self): element = np.atleast_1d(_read_dump('dump.element', 'unicode')) b = np.atleast_2d(_read_dump('dump.sna')) db = np.atleast_2d(_read_dump('dump.snad')) vb = np.atleast_2d(_read_dump('dump.snav')) return b, db, vb, element
Example 11
Project: me-ica Author: ME-ICA File: test_utils.py License: GNU Lesser General Public License v2.1 | 5 votes |
def test_working_type(): # Which type do input types with slope and inter cast to in numpy? # Wrapper function because we need to use the dtype str for comparison. We # need this because of the very confusing np.int32 != np.intp (on 32 bit). def wt(*args, **kwargs): return np.dtype(working_type(*args, **kwargs)).str d1 = np.atleast_1d for in_type in NUMERIC_TYPES: in_ts = np.dtype(in_type).str assert_equal(wt(in_type), in_ts) assert_equal(wt(in_type, 1, 0), in_ts) assert_equal(wt(in_type, 1.0, 0.0), in_ts) in_val = d1(in_type(0)) for slope_type in NUMERIC_TYPES: sl_val = slope_type(1) # no scaling, regardless of type assert_equal(wt(in_type, sl_val, 0.0), in_ts) sl_val = slope_type(2) # actual scaling out_val = in_val / d1(sl_val) assert_equal(wt(in_type, sl_val), out_val.dtype.str) for inter_type in NUMERIC_TYPES: i_val = inter_type(0) # no scaling, regardless of type assert_equal(wt(in_type, 1, i_val), in_ts) i_val = inter_type(1) # actual scaling out_val = in_val - d1(i_val) assert_equal(wt(in_type, 1, i_val), out_val.dtype.str) # Combine scaling and intercept out_val = (in_val - d1(i_val)) / d1(sl_val) assert_equal(wt(in_type, sl_val, i_val), out_val.dtype.str) # Confirm that type codes and dtypes work as well f32s = np.dtype(np.float32).str assert_equal(wt('f4', 1, 0), f32s) assert_equal(wt(np.dtype('f4'), 1, 0), f32s)
Example 12
Project: me-ica Author: ME-ICA File: volumeutils.py License: GNU Lesser General Public License v2.1 | 5 votes |
def _ftype4scaled_finite(tst_arr, slope, inter, direction='read', default=np.float32): """ Smallest float type for scaling of `tst_arr` that does not overflow """ assert direction in ('read', 'write') if not default in OK_FLOATS and default is np.longdouble: # Omitted longdouble return default def_ind = OK_FLOATS.index(default) # promote to arrays to avoid numpy scalar casting rules tst_arr = np.atleast_1d(tst_arr) slope = np.atleast_1d(slope) inter = np.atleast_1d(inter) warnings.filterwarnings('ignore', '.*overflow.*', RuntimeWarning) try: for ftype in OK_FLOATS[def_ind:]: tst_trans = tst_arr.copy() slope = slope.astype(ftype) inter = inter.astype(ftype) if direction == 'read': # as in reading of image from disk if slope != 1.0: tst_trans = tst_trans * slope if inter != 0.0: tst_trans = tst_trans + inter elif direction == 'write': if inter != 0.0: tst_trans = tst_trans - inter if slope != 1.0: tst_trans = tst_trans / slope if np.all(np.isfinite(tst_trans)): return ftype finally: warnings.filters.pop(0) raise ValueError('Overflow using highest floating point type')
Example 13
Project: simnibs Author: simnibs File: gpc.py License: GNU General Public License v3.0 | 5 votes |
def create_hdf5(self): '''Creates an HDF5 file to store the data ''' # if the hdf5 file does not exist, create it file_exists = os.path.exists(self.fn_hdf5) if file_exists: raise IOError('Cannot create hdf5 file: {0} ' 'it already exists!'.format(self.fn_hdf5)) self.mesh.write_hdf5(self.fn_hdf5, 'mesh/') self.mesh_roi.write_hdf5(self.fn_hdf5, 'mesh_roi/') self.poslist._write_conductivity_to_hdf5(self.fn_hdf5) with h5py.File(self.fn_hdf5, 'a') as f: f.create_dataset('roi', data=np.atleast_1d(np.array(self.roi, dtype=int)))
Example 14
Project: simnibs Author: simnibs File: gpc.py License: GNU General Public License v3.0 | 5 votes |
def record_data_matrix(self, data, name, group): ''' Appends or create data to the HDF5 file Parameters: ------------- data: np.ndarray Data to be appended. Will be appended along the first dimension name: str Name of data seet group: str Group where to place data set ''' data = np.array(data).squeeze() data = np.atleast_1d(data) with h5py.File(self.fn_hdf5, 'a') as f: try: g = f.create_group(group) except: g = f[group] if name not in g.keys(): g.create_dataset(name, shape=(0, ) + data.shape, maxshape=(None, ) + data.shape, dtype=data.dtype, chunks=(1, ) + data.shape) dset = g[name] dset.resize((dset.shape[0] + 1, ) + data.shape) dset[-1, ...] = data
Example 15
Project: simnibs Author: simnibs File: gpc.py License: GNU General Public License v3.0 | 5 votes |
def run_simulation(self, random_vars): poslist = self._update_poslist(random_vars) cond = poslist.cond2elmdata(self.mesh) v = fem.tdcs( self.mesh, cond, self.el_currents, self.el_tags, units='mm') self.mesh.nodedata = [v] cropped = self.mesh.crop_mesh(self.roi) v_c = cropped.nodedata[0] self.mesh.nodedata = [] qois = [] for qoi_name, qoi_f in self.qoi_function.items(): qois.append(qoi_f(v_c, random_vars)) self.record_data_matrix(random_vars, 'random_var_samples', '/') self.record_data_matrix(v.value, 'v_samples', 'mesh/data_matrices') self.record_data_matrix(v_c.value, 'v_samples', 'mesh_roi/data_matrices') for qoi_name, qoi_v in zip(self.qoi_function.keys(), qois): self.record_data_matrix( qoi_v, qoi_name + '_samples', 'mesh_roi/data_matrices') del cropped del cond del v del v_c return np.atleast_1d(qois[0]).reshape(-1)
Example 16
Project: simnibs Author: simnibs File: sim_struct.py License: GNU General Public License v3.0 | 5 votes |
def _prepare(self): self.thickness = np.atleast_1d(self.thickness) if len(self.thickness) == 0: raise ValueError("Electrode thickness not defined!") if self.channelnr is None: logger.warning('Please connect the electrode to a channel')
Example 17
Project: tangent Author: google File: grads.py License: Apache License 2.0 | 5 votes |
def atleast_1d(y, x): d[x] = numpy.reshape(d[y], numpy.shape(x))
Example 18
Project: tangent Author: google File: tangents.py License: Apache License 2.0 | 5 votes |
def tatleast_1d(z, x): d[z] = numpy.atleast_1d(d[x])
Example 19
Project: PyRadarMet Author: nguy File: variables.py License: GNU General Public License v2.0 | 5 votes |
def zdp(z_h, z_v): """ Reflectivity difference [dB]. From Rinehart (1997), Eqn 10.3 Parameters ---------- z_h : float Horizontal reflectivity [mm^6/m^3] z_v : float Horizontal reflectivity [mm^6/m^3] Notes ----- Ensure that both powers have the same units! Alternating horizontally and linearly polarized pulses are averaged. """ zh = np.atleast_1d(z_h) zv = np.atleast_1d(z_v) if len(zh) != len(zv): raise ValueError('Input variables must be same length') return zdp = np.full_like(zh, np.nan) good = np.where(zh > zv) zdp[good] = 10.* np.log10(zh[good] - zv[good]) return zdp
Example 20
Project: PyRadarMet Author: nguy File: variables.py License: GNU General Public License v2.0 | 5 votes |
def hdr(dbz_h, zdr): """ Differential reflectivity [dB] hail signature. From Aydin et al. (1986), Eqns 4-5 Parameters ---------- dbz_h : float or array Horizontal reflectivity [dBZ] zdr : float or array Differential reflectivity [dBZ] Notes ----- Ensure that both powers have the same units! Positive HDR and strong gradients at edges signify ice. The larger HDR, the greater likelihood that ice is present. Considerations for this equation (see paper for more details): 1) Standar error of disdrometer data allowed for 2) Drop oscillation accounted for based on 50% model of Seliga et al (1984) 3) Lower (27) bound chose to provide constant Zh ref level 4) Upper cutoff of 60 (may be too low) Picca and Ryzhkof (2012) mention that this does not take into account the hail melting process. So use at your own risk! """ zdr = np.atleast_1d(zdr) # Set the f(zdr) based upon observations f = np.full_like(zdr, np.nan) negind = np.where(zdr <= 0) lowind = np.where((zdr > 0) & (zdr <= 1.74)) highind = np.where(zdr > 1.74) f[negind] = 27. f[lowind] = 19. * zdr[lowind] + 27. f[highind] = 60. # Calculate HDR return np.asarray(dbz_h) - f
Example 21
Project: python-control Author: python-control File: xferfcn.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def minreal(self, tol=None): """Remove cancelling pole/zero pairs from a transfer function""" # based on octave minreal # default accuracy from sys import float_info sqrt_eps = sqrt(float_info.epsilon) # pre-allocate arrays num = [[[] for j in range(self.inputs)] for i in range(self.outputs)] den = [[[] for j in range(self.inputs)] for i in range(self.outputs)] for i in range(self.outputs): for j in range(self.inputs): # split up in zeros, poles and gain newzeros = [] zeros = roots(self.num[i][j]) poles = roots(self.den[i][j]) gain = self.num[i][j][0] / self.den[i][j][0] # check all zeros for z in zeros: t = tol or \ 1000 * max(float_info.epsilon, abs(z) * sqrt_eps) idx = where(abs(z - poles) < t)[0] if len(idx): # cancel this zero against one of the poles poles = delete(poles, idx[0]) else: # keep this zero newzeros.append(z) # poly([]) returns a scalar, but we always want a 1d array num[i][j] = np.atleast_1d(gain * real(poly(newzeros))) den[i][j] = np.atleast_1d(real(poly(poles))) # end result return TransferFunction(num, den, self.dt)
Example 22
Project: rai-python Author: MarcToussaint File: transformations.py License: MIT License | 5 votes |
def vector_norm(data, axis=None, out=None): """Return length, i.e. eucledian norm, of ndarray along axis. >>> v = numpy.random.random(3) >>> n = vector_norm(v) >>> numpy.allclose(n, numpy.linalg.norm(v)) True >>> v = numpy.random.rand(6, 5, 3) >>> n = vector_norm(v, axis=-1) >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=2))) True >>> n = vector_norm(v, axis=1) >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) True >>> v = numpy.random.rand(5, 4, 3) >>> n = numpy.empty((5, 3), dtype=numpy.float64) >>> vector_norm(v, axis=1, out=n) >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) True >>> vector_norm([]) 0.0 >>> vector_norm([1.0]) 1.0 """ data = numpy.array(data, dtype=numpy.float64, copy=True) if out is None: if data.ndim == 1: return math.sqrt(numpy.dot(data, data)) data *= data out = numpy.atleast_1d(numpy.sum(data, axis=axis)) numpy.sqrt(out, out) return out else: data *= data numpy.sum(data, axis=axis, out=out) numpy.sqrt(out, out)
Example 23
Project: rai-python Author: MarcToussaint File: transformations.py License: MIT License | 5 votes |
def unit_vector(data, axis=None, out=None): """Return ndarray normalized by length, i.e. eucledian norm, along axis. >>> v0 = numpy.random.random(3) >>> v1 = unit_vector(v0) >>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0)) True >>> v0 = numpy.random.rand(5, 4, 3) >>> v1 = unit_vector(v0, axis=-1) >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2) >>> numpy.allclose(v1, v2) True >>> v1 = unit_vector(v0, axis=1) >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1) >>> numpy.allclose(v1, v2) True >>> v1 = numpy.empty((5, 4, 3), dtype=numpy.float64) >>> unit_vector(v0, axis=1, out=v1) >>> numpy.allclose(v1, v2) True >>> list(unit_vector([])) [] >>> list(unit_vector([1.0])) [1.0] """ if out is None: data = numpy.array(data, dtype=numpy.float64, copy=True) if data.ndim == 1: data /= math.sqrt(numpy.dot(data, data)) return data else: if out is not data: out[:] = numpy.array(data, copy=False) data = out length = numpy.atleast_1d(numpy.sum(data*data, axis)) numpy.sqrt(length, length) if axis is not None: length = numpy.expand_dims(length, axis) data /= length if out is None: return data
Example 24
Project: astropy-healpix Author: astropy File: healpy.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def nest2ring(nside, ipix): """Drop-in replacement for healpy `~healpy.pixelfunc.nest2ring`.""" ipix = np.atleast_1d(ipix).astype(np.int64, copy=False) return nested_to_ring(ipix, nside)
Example 25
Project: astropy-healpix Author: astropy File: healpy.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def ring2nest(nside, ipix): """Drop-in replacement for healpy `~healpy.pixelfunc.ring2nest`.""" ipix = np.atleast_1d(ipix).astype(np.int64, copy=False) return ring_to_nested(ipix, nside)
Example 26
Project: recruit Author: Frank-qlu File: mrecords.py License: Apache License 2.0 | 5 votes |
def fromarrays(arraylist, dtype=None, shape=None, formats=None, names=None, titles=None, aligned=False, byteorder=None, fill_value=None): """ Creates a mrecarray from a (flat) list of masked arrays. Parameters ---------- arraylist : sequence A list of (masked) arrays. Each element of the sequence is first converted to a masked array if needed. If a 2D array is passed as argument, it is processed line by line dtype : {None, dtype}, optional Data type descriptor. shape : {None, integer}, optional Number of records. If None, shape is defined from the shape of the first array in the list. formats : {None, sequence}, optional Sequence of formats for each individual field. If None, the formats will be autodetected by inspecting the fields and selecting the highest dtype possible. names : {None, sequence}, optional Sequence of the names of each field. fill_value : {None, sequence}, optional Sequence of data to be used as filling values. Notes ----- Lists of tuples should be preferred over lists of lists for faster processing. """ datalist = [getdata(x) for x in arraylist] masklist = [np.atleast_1d(getmaskarray(x)) for x in arraylist] _array = recfromarrays(datalist, dtype=dtype, shape=shape, formats=formats, names=names, titles=titles, aligned=aligned, byteorder=byteorder).view(mrecarray) _array._mask.flat = list(zip(*masklist)) if fill_value is not None: _array.fill_value = fill_value return _array
Example 27
Project: recruit Author: Frank-qlu File: test_regression.py License: Apache License 2.0 | 5 votes |
def test_mem_custom_float_to_array(self): # Ticket 702 class MyFloat(object): def __float__(self): return 1.0 tmp = np.atleast_1d([MyFloat()]) tmp.astype(float) # Should succeed
Example 28
Project: recruit Author: Frank-qlu File: test_nanops.py License: Apache License 2.0 | 5 votes |
def _minmax_wrap(self, value, axis=None, func=None): # numpy warns if all nan res = func(value, axis) if res.dtype.kind == 'm': res = np.atleast_1d(res) return res
Example 29
Project: deepchem Author: deepchem File: datasets.py License: MIT License | 5 votes |
def sparse_shuffle(self): """Shuffling that exploits data sparsity to shuffle large datasets. Only for 1-dimensional feature vectors (does not work for tensorial featurizations). """ time1 = time.time() shard_size = self.get_shard_size() num_shards = self.get_number_shards() X_sparses, ys, ws, ids = [], [], [], [] num_features = None for i in range(num_shards): (X_s, y_s, w_s, ids_s) = self.get_shard(i) if num_features is None: num_features = X_s.shape[1] X_sparse = sparsify_features(X_s) X_sparses, ys, ws, ids = (X_sparses + [X_sparse], ys + [y_s], ws + [w_s], ids + [np.atleast_1d(np.squeeze(ids_s))]) # Get full dataset in memory (X_sparse, y, w, ids) = (np.vstack(X_sparses), np.vstack(ys), np.vstack(ws), np.concatenate(ids)) # Shuffle in memory num_samples = len(X_sparse) permutation = np.random.permutation(num_samples) X_sparse, y, w, ids = (X_sparse[permutation], y[permutation], w[permutation], ids[permutation]) # Write shuffled shards out to disk for i in range(num_shards): start, stop = i * shard_size, (i + 1) * shard_size (X_sparse_s, y_s, w_s, ids_s) = (X_sparse[start:stop], y[start:stop], w[start:stop], ids[start:stop]) X_s = densify_features(X_sparse_s, num_features) self.set_shard(i, X_s, y_s, w_s, ids_s) time2 = time.time() logger.info("TIMING: sparse_shuffle took %0.3f s" % (time2 - time1))
Example 30
Project: deepchem Author: deepchem File: datasets.py License: MIT License | 5 votes |
def ids(self): """Get the ids vector for this dataset as a single numpy array.""" if len(self) == 0: return np.array([]) ids = [] for i in range(self.get_number_shards()): ids.append(np.atleast_1d(np.squeeze(self.get_shard_ids(i)))) return np.concatenate(ids)