Python numpy.exp2() Examples
The following are 30 code examples for showing how to use numpy.exp2(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: chainer-stylegan Author: pfnet-research File: folder_to_multisize_hdf5.py License: MIT License | 6 votes |
def __init__(self, h5_filename, resolution, channels=3, buffer_size_mb=512): rlog2 = int(np.floor(np.log2(resolution))) assert resolution == 2 ** rlog2 self.resolution = resolution self.channels = channels self.h5_file = h5py.File(h5_filename, 'w', libver='latest') self.h5_lods = [] self.lods = [] self.buffers = [] self.buffer_sizes = [] self.metadata = {} for lod in range(rlog2, -1, -1): r = 2 ** lod; c = channels bytes_per_item = c * (r ** 2) chunk_size = int(np.ceil(128.0 / bytes_per_item)) buffer_size = int(np.ceil(float(buffer_size_mb) * np.exp2(20) / bytes_per_item)) lod = self.h5_file.create_dataset('%dx%d' % (r,r), shape=(0,c,r,r), dtype=np.uint8, maxshape=(None,c,r,r), chunks=(chunk_size,c,r,r), compression='gzip', compression_opts=4) self.metadata['%dx%d' % (r, r)] = [] self.h5_lods.append(lod) self.lods.append('%dx%d' % (r, r)) self.buffers.append(np.zeros((buffer_size,c,r,r), dtype=np.uint8)) self.buffer_sizes.append(0) print('HDF5 Exporter will use following LODs', self.lods)
Example 2
Project: pylogit Author: timothyb0912 File: choice_calcs.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def robust_outer_product(vec_1, vec_2): """ Calculates a 'robust' outer product of two vectors that may or may not contain very small values. Parameters ---------- vec_1 : 1D ndarray vec_2 : 1D ndarray Returns ------- outer_prod : 2D ndarray. The outer product of vec_1 and vec_2 """ mantissa_1, exponents_1 = np.frexp(vec_1) mantissa_2, exponents_2 = np.frexp(vec_2) new_mantissas = mantissa_1[None, :] * mantissa_2[:, None] new_exponents = exponents_1[None, :] + exponents_2[:, None] return new_mantissas * np.exp2(new_exponents)
Example 3
Project: celeba-hq-modified Author: willylulu File: h5tool.py License: MIT License | 6 votes |
def __init__(self, h5_filename, resolution, channels=3): rlog2 = int(np.floor(np.log2(resolution))) assert resolution == 2 ** rlog2 self.resolution = resolution self.channels = channels self.h5_file = h5py.File(h5_filename, 'w') self.h5_lods = [] self.buffers = [] self.buffer_sizes = [] for lod in xrange(rlog2, -1, -1): r = 2 ** lod; c = channels bytes_per_item = c * (r ** 2) chunk_size = int(np.ceil(128.0 / bytes_per_item)) buffer_size = int(np.ceil(512.0 * np.exp2(20) / bytes_per_item)) lod = self.h5_file.create_dataset('data%dx%d' % (r,r), shape=(0,c,r,r), dtype=np.uint8, maxshape=(None,c,r,r), chunks=(chunk_size,c,r,r), compression='gzip', compression_opts=4) self.h5_lods.append(lod) self.buffers.append(np.zeros((buffer_size,c,r,r), dtype=np.uint8)) self.buffer_sizes.append(0)
Example 4
Project: celeba-hq-modified Author: willylulu File: h5tool.py License: MIT License | 6 votes |
def inspect(h5_filename): print '%-20s%s' % ('HDF5 filename', h5_filename) file_size = os.stat(h5_filename).st_size print '%-20s%.2f GB' % ('Total size', float(file_size) / np.exp2(30)) h5 = h5py.File(h5_filename, 'r') lods = sorted([value for key, value in h5.iteritems() if key.startswith('data')], key=lambda lod: -lod.shape[3]) shapes = [lod.shape for lod in lods] shape = shapes[0] h5.close() print '%-20s%d' % ('Total images', shape[0]) print '%-20s%dx%d' % ('Resolution', shape[3], shape[2]) print '%-20s%d' % ('Color channels', shape[1]) print '%-20s%.2f KB' % ('Size per image', float(file_size) / shape[0] / np.exp2(10)) if len(lods) != int(np.log2(shape[3])) + 1: print 'Warning: The HDF5 file contains incorrect number of LODs' if any(s[0] != shape[0] for s in shapes): print 'Warning: The HDF5 file contains inconsistent number of images in different LODs' print 'Perhaps the dataset creation script was terminated abruptly?' #----------------------------------------------------------------------------
Example 5
Project: neural_chat Author: natashamjaques File: fairseq.py License: MIT License | 6 votes |
def report(self): """Return metrics calculated by the model.""" # if we haven't initialized yet, just return a dummy object if not hasattr(self, "trainer"): return {} output = {k: v.avg for k, v in self.meters.items()} if "nll_loss" in self.meters: # special case, we used sentence averaging so ppl comes from nll_loss output["ppl"] = np.exp2(self.meters["nll_loss"].avg) else: # normal case, just use loss output["ppl"] = np.exp2(self.meters["loss"].avg) # Fairseq trainer metrics we'll pass up the way trainer_metrics = {"ups", "wps", "gnorm", "clip"} if self.is_training: for k in trainer_metrics: output[k] = self.trainer.meters[k].avg # for display purposes output = {k: round_sigfigs(v, 4) for k, v in output.items()} return output
Example 6
Project: Keras-progressive_growing_of_gans Author: MSC-BUAA File: h5tool.py License: MIT License | 6 votes |
def __init__(self, h5_filename, resolution, channels=3): rlog2 = int(np.floor(np.log2(resolution))) assert resolution == 2 ** rlog2 self.resolution = resolution self.channels = channels self.h5_file = h5py.File(h5_filename, 'w') self.h5_lods = [] self.buffers = [] self.buffer_sizes = [] for lod in range(rlog2, -1, -1): r = 2 ** lod; c = channels bytes_per_item = c * (r ** 2) chunk_size = int(np.ceil(128.0 / bytes_per_item)) buffer_size = int(np.ceil(512.0 * np.exp2(20) / bytes_per_item)) #change to channel last lod = self.h5_file.create_dataset('data%dx%d' % (r,r), shape=(0,r,r,c), dtype=np.uint8, maxshape=(None,r,r,c), chunks=(chunk_size,r,r,c), compression='gzip', compression_opts=4) self.h5_lods.append(lod) self.buffers.append(np.zeros((buffer_size,r,r,c), dtype=np.uint8)) self.buffer_sizes.append(0)
Example 7
Project: progressive_growing_of_gans_tensorflow Author: zhangqianhui File: h5tool.py License: MIT License | 6 votes |
def __init__(self, h5_filename, resolution, channels=3): rlog2 = int(np.floor(np.log2(resolution))) assert resolution == 2 ** rlog2 self.resolution = resolution self.channels = channels self.h5_file = h5py.File(h5_filename, 'w') self.h5_lods = [] self.buffers = [] self.buffer_sizes = [] for lod in xrange(rlog2, -1, -1): r = 2 ** lod; c = channels bytes_per_item = c * (r ** 2) chunk_size = int(np.ceil(128.0 / bytes_per_item)) buffer_size = int(np.ceil(512.0 * np.exp2(20) / bytes_per_item)) lod = self.h5_file.create_dataset('data%dx%d' % (r, r), shape=(0, c, r, r), dtype=np.uint8, maxshape=(None, c, r, r), chunks=(chunk_size, c, r, r), compression='gzip', compression_opts=4) self.h5_lods.append(lod) self.buffers.append(np.zeros((buffer_size, c, r, r), dtype=np.uint8)) self.buffer_sizes.append(0)
Example 8
Project: progressive_growing_of_gans_tensorflow Author: zhangqianhui File: h5tool.py License: MIT License | 6 votes |
def inspect(h5_filename): print('%-20s%s' % ('HDF5 filename', h5_filename)) file_size = os.stat(h5_filename).st_size print('%-20s%.2f GB' % ('Total size', float(file_size) / np.exp2(30))) h5 = h5py.File(h5_filename, 'r') lods = sorted([value for key, value in h5.iteritems() if key.startswith('data')], key=lambda lod: -lod.shape[3]) shapes = [lod.shape for lod in lods] shape = shapes[0] h5.close() print('%-20s%d' % ('Total images', shape[0])) print('%-20s%dx%d' % ('Resolution', shape[3], shape[2])) print('%-20s%d' % ('Color channels', shape[1])) print('%-20s%.2f KB' % ('Size per image', float(file_size) / shape[0] / np.exp2(10))) if len(lods) != int(np.log2(shape[3])) + 1: print('Warning: The HDF5 file contains incorrect number of LODs') if any(s[0] != shape[0] for s in shapes): print('Warning: The HDF5 file contains inconsistent number of images in different LODs') print('Perhaps the dataset creation script was terminated abruptly?') # ----------------------------------------------------------------------------
Example 9
Project: neuropythy Author: noahbenson File: core.py License: GNU Affero General Public License v3.0 | 5 votes |
def exp2(x): x = to_potential(x) if is_const_potential(x): return PotentialConstant(np.exp2(x.c)) else: return ConstantPowerPotential(2.0, x)
Example 10
Project: NeuroKit Author: neuropsychology File: fractal_correlation.py License: MIT License | 5 votes |
def _fractal_correlation_get_r(r, signal, dist): if isinstance(r, str): if r == "nolds": sd = np.std(signal, ddof=1) min_r, max_r, factor = 0.1 * sd, 0.5 * sd, 1.03 r_n = int(np.floor(np.log(1.0 * max_r / min_r) / np.log(factor))) r_vals = np.array([min_r * (factor ** i) for i in range(r_n + 1)]) elif r == "Corr_Dim": r_min, r_max = np.min(dist[np.where(dist > 0)]), np.exp(np.floor(np.log(np.max(dist)))) n_r = np.int(np.floor(np.log(r_max / r_min))) + 1 ones = -1 * np.ones([n_r]) r_vals = r_max * np.exp(ones * np.arange(n_r) - ones) elif r == "boon2008": r_min, r_max = np.min(dist[np.where(dist > 0)]), np.max(dist) r_vals = r_min + np.arange(1, 65) * ((r_max - r_min) / 64) if isinstance(r, int): dist_range = np.max(dist) - np.min(dist) r_min, r_max = (np.min(dist) + 0.025 * dist_range), (np.min(dist) + 0.5 * dist_range) r_vals = np.exp2(np.linspace(np.log2(r_min), np.log2(r_max), r, endpoint=True)) return r_vals
Example 11
Project: NeuroKit Author: neuropsychology File: expspace.py License: MIT License | 5 votes |
def expspace(start, stop, num=50, base=1): """Exponential range. Creates a list of integer values of a given length from start to stop, spread by an exponential function. Parameters ---------- start : int Minimum range values. stop : int Maximum range values. num : int Number of samples to generate. Default is 50. Must be non-negative. base : float If 1, will use ``np.exp()``, if 2 will use ``np.exp2()``. Returns ------- array An array of integer values spread by the exponential function. Examples --------- >>> import neurokit2 as nk >>> nk.expspace(start=4, stop=100, num=10) #doctest: +ELLIPSIS array([ 4, 6, 8, 12, 17, 24, 34, 49, 70, 100]) """ if base == 1: seq = np.exp(np.linspace(np.log(start), np.log(stop), num, endpoint=True)) else: seq = np.exp2(np.linspace(np.log2(start), np.log2(stop), num, endpoint=True)) # pylint: disable=E1111 # Round and convert to int seq = np.round(seq).astype(np.int) return seq
Example 12
Project: recruit Author: Frank-qlu File: test_umath.py License: Apache License 2.0 | 5 votes |
def test_exp2_values(self): x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for dt in ['f', 'd', 'g']: xf = np.array(x, dtype=dt) yf = np.array(y, dtype=dt) assert_almost_equal(np.exp2(yf), xf)
Example 13
Project: recruit Author: Frank-qlu File: test_regression.py License: Apache License 2.0 | 5 votes |
def test_log1p_compiler_shenanigans(self): # Check if log1p is behaving on 32 bit intel systems. assert_(np.isfinite(np.log1p(np.exp2(-53))))
Example 14
Project: rankeval Author: hpclab File: dcg.py License: Mozilla Public License 2.0 | 5 votes |
def eval_per_query(self, y, y_pred): """ This method helps compute the DCG score per query. It is called by the eval function which averages and aggregates the scores for each query. Parameters ---------- y: numpy array Represents the labels of instances corresponding to one query in the dataset (ground truth). y_pred: numpy array. Represents the predicted document scores obtained during the model scoring phase for that query. Returns ------- dcg: float Represents the DCG score for one query. """ idx_y_pred_sorted = np.argsort(y_pred)[::-1] if self.cutoff is not None: idx_y_pred_sorted = idx_y_pred_sorted[:self.cutoff] discount = np.log2(np.arange(2, idx_y_pred_sorted.size + 2)) if self.implementation == "flat": gain = y[idx_y_pred_sorted] elif self.implementation == "exp": gain = np.exp2(y[idx_y_pred_sorted]) - 1.0 dcg = (gain / discount).sum() return dcg
Example 15
Project: mars Author: mars-project File: exp2.py License: Apache License 2.0 | 5 votes |
def exp2(x, out=None, where=None, **kwargs): """ Calculate `2**p` for all `p` in the input tensor. Parameters ---------- x : array_like Input values. out : Tensor, None, or tuple of tensor and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated tensor is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs Returns ------- out : Tensor Element-wise 2 to the power `x`. See Also -------- power Examples -------- >>> import mars.tensor as mt >>> mt.exp2([2, 3]).execute() array([ 4., 8.]) """ op = TensorExp2(**kwargs) return op(x, out=out, where=where)
Example 16
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_umath.py License: MIT License | 5 votes |
def test_exp2_values(self): x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for dt in ['f', 'd', 'g']: xf = np.array(x, dtype=dt) yf = np.array(y, dtype=dt) assert_almost_equal(np.exp2(yf), xf)
Example 17
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_regression.py License: MIT License | 5 votes |
def test_log1p_compiler_shenanigans(self): # Check if log1p is behaving on 32 bit intel systems. assert_(np.isfinite(np.log1p(np.exp2(-53))))
Example 18
Project: D-VAE Author: muhanzhang File: test_var.py License: MIT License | 5 votes |
def test_numpy_method(): # This type of code is used frequently by PyMC3 users x = tt.dmatrix('x') data = np.random.rand(5, 5) x.tag.test_value = data for fct in [np.arccos, np.arccosh, np.arcsin, np.arcsinh, np.arctan, np.arctanh, np.ceil, np.cos, np.cosh, np.deg2rad, np.exp, np.exp2, np.expm1, np.floor, np.log, np.log10, np.log1p, np.log2, np.rad2deg, np.sin, np.sinh, np.sqrt, np.tan, np.tanh, np.trunc]: y = fct(x) f = theano.function([x], y) utt.assert_allclose(np.nan_to_num(f(data)), np.nan_to_num(fct(data)))
Example 19
Project: D-VAE Author: muhanzhang File: basic.py License: MIT License | 5 votes |
def impl(self, x): # If x is an int8 or uint8, numpy.exp2 will compute the result in # half-precision (float16), where we want float32. x_dtype = str(getattr(x, 'dtype', '')) if x_dtype in ('int8', 'uint8'): return numpy.exp2(x, sig='f') return numpy.exp2(x)
Example 20
Project: D-VAE Author: muhanzhang File: basic.py License: MIT License | 5 votes |
def grad(self, inputs, gout): (x,) = inputs (gz,) = gout if x.type in complex_types: raise NotImplementedError() if self(x).type in discrete_types: if x.type in discrete_types: return [x.zeros_like(dtype=theano.config.floatX)] else: return [x.zeros_like()] return gz * exp2(x) * log(numpy.cast[x.type](2)),
Example 21
Project: D-VAE Author: muhanzhang File: basic.py License: MIT License | 5 votes |
def c_code(self, node, name, inputs, outputs, sub): (x,) = inputs (z,) = outputs if node.inputs[0].type in complex_types: raise NotImplementedError('type not supported', type) return "%(z)s = exp2(%(x)s);" % locals()
Example 22
Project: tmtoolkit Author: WZBSocialScienceCenter File: tm_gensim.py License: Apache License 2.0 | 5 votes |
def _get_model_perplexity(model, eval_corpus): n_words = sum(cnt for document in eval_corpus for _, cnt in document) bound = model.bound(eval_corpus) perwordbound = bound / n_words return np.exp2(-perwordbound)
Example 23
Project: vnpy_crypto Author: birforce File: test_umath.py License: MIT License | 5 votes |
def test_exp2_values(self): x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for dt in ['f', 'd', 'g']: xf = np.array(x, dtype=dt) yf = np.array(y, dtype=dt) assert_almost_equal(np.exp2(yf), xf)
Example 24
Project: vnpy_crypto Author: birforce File: test_regression.py License: MIT License | 5 votes |
def test_log1p_compiler_shenanigans(self): # Check if log1p is behaving on 32 bit intel systems. assert_(np.isfinite(np.log1p(np.exp2(-53))))
Example 25
Project: Computable Author: ktraunmueller File: test_umath.py License: MIT License | 5 votes |
def test_exp2_values(self) : x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for dt in ['f', 'd', 'g'] : xf = np.array(x, dtype=dt) yf = np.array(y, dtype=dt) assert_almost_equal(np.exp2(yf), xf)
Example 26
Project: Computable Author: ktraunmueller File: test_regression.py License: MIT License | 5 votes |
def test_log1p_compiler_shenanigans(self): # Check if log1p is behaving on 32 bit intel systems. assert_(np.isfinite(np.log1p(np.exp2(-53))))
Example 27
Project: Computable Author: ktraunmueller File: test_matfuncs.py License: MIT License | 5 votes |
def test_briggs_helper_function(self): np.random.seed(1234) for a in np.random.randn(10) + 1j * np.random.randn(10): for k in range(5): x_observed = _matfuncs_inv_ssq._briggs_helper_function(a, k) x_expected = a ** np.exp2(-k) - 1 assert_allclose(x_observed, x_expected)
Example 28
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_umath.py License: MIT License | 5 votes |
def test_exp2_values(self): x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for dt in ['f', 'd', 'g']: xf = np.array(x, dtype=dt) yf = np.array(y, dtype=dt) assert_almost_equal(np.exp2(yf), xf)
Example 29
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_regression.py License: MIT License | 5 votes |
def test_log1p_compiler_shenanigans(self): # Check if log1p is behaving on 32 bit intel systems. assert_(np.isfinite(np.log1p(np.exp2(-53))))
Example 30
Project: trax Author: google File: math_ops.py License: Apache License 2.0 | 5 votes |
def logaddexp2(x1, x2): amax = maximum(x1, x2) delta = x1 - x2 return array_ops.where( isnan(delta), x1 + x2, # NaNs or infinities of the same sign. amax + log1p(exp2(-abs(delta))) / np.log(2))