Python numpy.fmod() Examples
The following are 30 code examples for showing how to use numpy.fmod(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: recruit Author: Frank-qlu File: test_ufunc.py License: Apache License 2.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example 2
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 3
Project: vnpy_crypto Author: birforce File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 4
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example 5
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 6
Project: predictive-maintenance-using-machine-learning Author: awslabs File: test_ufunc.py License: Apache License 2.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example 7
Project: pySINDy Author: luckystarufo File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 8
Project: mxnet-lambda Author: awslabs File: test_ufunc.py License: Apache License 2.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 9
Project: elasticintel Author: securityclippy File: test_ufunc.py License: GNU General Public License v3.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 10
Project: coffeegrindsize Author: jgagneastro File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example 11
Project: incubator-tvm Author: apache File: test_target_codegen_cuda.py License: Apache License 2.0 | 6 votes |
def test_vectorized_intrin2(dtype="float32"): c2 = tvm.tir.const(2, dtype=dtype) test_funcs = [ (tvm.tir.power, lambda x : np.power(x, 2.0)), (tvm.tir.fmod, lambda x : np.fmod(x, 2.0)) ] def run_test(tvm_intrin, np_func): if not tvm.gpu(0).exist or not tvm.runtime.enabled("cuda"): print("skip because cuda is not enabled..") return n = 128 A = te.placeholder((n,), dtype=dtype, name='A') B = te.compute((n,), lambda i: tvm_intrin(A[i], c2), name='B') s = sched(B) f = tvm.build(s, [A, B], "cuda") ctx = tvm.gpu(0) a = tvm.nd.array(np.random.uniform(0, 1, size=n).astype(A.dtype), ctx) b = tvm.nd.array(np.zeros(shape=(n,)).astype(A.dtype), ctx) f(a, b) tvm.testing.assert_allclose(b.asnumpy(), np_func(a.asnumpy()), atol=1e-3, rtol=1e-3) for func in test_funcs: run_test(*func)
Example 12
Project: Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda Author: PacktPublishing File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 13
Project: twitter-stock-recommendation Author: alvarobartt File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 14
Project: keras-lambda Author: sunilmallya File: test_ufunc.py License: MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example 15
Project: onnx-tensorflow Author: onnx File: test_node.py License: Apache License 2.0 | 5 votes |
def test_mod(self): if legacy_opset_pre_ver(10): raise unittest.SkipTest("ONNX version {} doesn't support Mod.".format( defs.onnx_opset_version())) x = self._get_rnd_float32(shape=[5, 5]) y = self._get_rnd_float32(shape=[5, 5]) node_def = helper.make_node("Mod", ["X", "Y"], ["Z"], fmod=0) output = run_node(node_def, [x, y]) np.testing.assert_almost_equal(output["Z"], np.mod(x, y)) node_def = helper.make_node("Mod", ["X", "Y"], ["Z"], fmod=1) output = run_node(node_def, [x, y]) np.testing.assert_almost_equal(output["Z"], np.fmod(x, y))
Example 16
Project: K3D-jupyter Author: K3D-tools File: transform.py License: MIT License | 5 votes |
def __setattr__(self, key, value): """Set attributes with conversion to ndarray where needed.""" is_set = hasattr(self, key) # == False in constructor # parameter canonicalization and some validation via reshaping if value is None: # TODO: maybe forbid for some fields pass elif key == 'translation': value = np.array(value, dtype=np.float32).reshape(3, 1) elif key == 'rotation': value = np.array(value, dtype=np.float32).reshape(4) value[0] = np.fmod(value[0], 2.0 * np.pi) if value[0] < 0.0: value[0] += 2.0 * np.pi value[0] = np.cos(value[0] / 2) norm = np.linalg.norm(value[1:4]) needed_norm = np.sqrt(1 - value[0] * value[0]) if abs(norm - needed_norm) > _epsilon: if norm < _epsilon: raise ValueError('Norm of (x, y, z) part of quaternion too close to zero') value[1:4] = value[1:4] / norm * needed_norm # assert abs(np.linalg.norm(value) - 1.0) < _epsilon elif key == 'scaling': value = np.array(value, dtype=np.float32).reshape(3) elif key in ['parent_matrix', 'custom_matrix', 'model_matrix']: value = np.array(value, dtype=np.float32).reshape((4, 4)) super(Transform, self).__setattr__(key, value) if is_set and key != 'model_matrix': self._recompute_matrix() self._notify_dependants()
Example 17
Project: hcipy Author: ehpor File: periodic_optical_element.py License: MIT License | 5 votes |
def __init__(self, input_grid, pitch, apodization, orientation=0, even_grid=False): '''An even asphere micro-lens array. Parameters ---------- input_grid : Grid The grid on which the periodic optical element is evaluated. pitch : scalar The pitch of the periodic optical element. apodization : Apodizer The apodizer that will be evaluated on the periodic grid. orientation : scalar The orientation of the periodic optical element. even_grid : bool This determines whether zero is in between two elements or if it is the center of an element. ''' self.input_grid = input_grid.copy() self.input_grid = self.input_grid.rotated(orientation) if even_grid: xf = (np.fmod(abs(self.input_grid.x), pitch) - pitch / 2) * np.sign(self.input_grid.x) yf = (np.fmod(abs(self.input_grid.y), pitch) - pitch / 2) * np.sign(self.input_grid.y) else: xf = (np.fmod(abs(self.input_grid.x) + pitch / 2, pitch) - pitch / 2) * np.sign(self.input_grid.x) yf = (np.fmod(abs(self.input_grid.y) + pitch / 2, pitch) - pitch / 2) * np.sign(self.input_grid.y) periodic_grid = CartesianGrid(UnstructuredCoords((xf, yf))) self.apodization = apodization(periodic_grid)
Example 18
Project: chainer Author: chainer File: test_fmod.py License: MIT License | 5 votes |
def forward(self, inputs, device): x, divisor = inputs y = functions.fmod(x, divisor) return y,
Example 19
Project: chainer Author: chainer File: test_fmod.py License: MIT License | 5 votes |
def forward_expected(self, inputs): x, divisor = inputs expected = numpy.fmod(x, divisor) expected = numpy.asarray(expected) return expected,
Example 20
Project: deep_image_model Author: tobegit3hub File: math_ops_test.py License: Apache License 2.0 | 5 votes |
def testFloat(self): x = [0.5, 0.7, 0.3] for dtype in [np.float32, np.double]: # Test scalar and vector versions. for denom in [x[0], [x[0]] * 3]: x_np = np.array(x, dtype=dtype) with self.test_session(use_gpu=True): x_tf = constant_op.constant(x_np, shape=x_np.shape) y_tf = math_ops.mod(x_tf, denom) y_tf_np = y_tf.eval() y_np = np.fmod(x_np, denom) self.assertAllClose(y_tf_np, y_np, atol=1e-2)
Example 21
Project: deep_image_model Author: tobegit3hub File: math_ops_test.py License: Apache License 2.0 | 5 votes |
def testTruncateModInt(self): nums, divs = self.intTestData() with self.test_session(): tf_result = math_ops.truncatemod(nums, divs).eval() np_result = np.fmod(nums, divs) self.assertAllEqual(tf_result, np_result)
Example 22
Project: deep_image_model Author: tobegit3hub File: math_ops_test.py License: Apache License 2.0 | 5 votes |
def testTruncateModFloat(self): nums, divs = self.floatTestData() with self.test_session(): tf_result = math_ops.truncatemod(nums, divs).eval() np_result = np.fmod(nums, divs) self.assertAllEqual(tf_result, np_result)
Example 23
Project: flappy Author: purdue-biorobotics File: controller_maneuver.py License: MIT License | 5 votes |
def wrap_180(self, angle): if (angle > 3*np.pi or angle < -3*np.pi): angle = np.fmod(angle,2*np.pi) if (angle > np.pi): angle = angle - 2*np.pi if (angle < - np.pi): angle = angle + 2*np.pi return angle;
Example 24
Project: flappy Author: purdue-biorobotics File: pid_controller.py License: MIT License | 5 votes |
def wrap_180(self, angle): if (angle > 3*np.pi or angle < -3*np.pi): angle = np.fmod(angle,2*np.pi) if (angle > np.pi): angle = angle - 2*np.pi if (angle < - np.pi): angle = angle + 2*np.pi return angle;
Example 25
Project: flappy Author: purdue-biorobotics File: pid_xy_arc_z.py License: MIT License | 5 votes |
def wrap_180(self, angle): if (angle > 3*np.pi or angle < -3*np.pi): angle = np.fmod(angle,2*np.pi) if (angle > np.pi): angle = angle - 2*np.pi if (angle < - np.pi): angle = angle + 2*np.pi return angle;
Example 26
Project: flappy Author: purdue-biorobotics File: pid_xy_arc_z_maneuver.py License: MIT License | 5 votes |
def wrap_180(self, angle): if (angle > 3*np.pi or angle < -3*np.pi): angle = np.fmod(angle,2*np.pi) if (angle > np.pi): angle = angle - 2*np.pi if (angle < - np.pi): angle = angle + 2*np.pi return angle;
Example 27
Project: flappy Author: purdue-biorobotics File: controller_no_base.py License: MIT License | 5 votes |
def wrap_180(self, angle): if (angle > 3*np.pi or angle < -3*np.pi): angle = np.fmod(angle,2*np.pi) if (angle > np.pi): angle = angle - 2*np.pi if (angle < - np.pi): angle = angle + 2*np.pi return angle;
Example 28
Project: qkit Author: qkitgroup File: circlefit.py License: GNU General Public License v2.0 | 5 votes |
def _periodic_boundary(self,x,bound): return np.fmod(x,bound)-np.trunc(x/bound)*bound
Example 29
Project: multi-modal-regression Author: JHUVisionLab File: evaluateGeodesicRegressionModel.py License: MIT License | 5 votes |
def myProj(x): angle = torch.norm(x, 2, 1, True) axis = F.normalize(x) angle = torch.fmod(angle, 2*np.pi) return angle*axis # my model for pose estimation: feature model + 1layer pose model x 12
Example 30
Project: sparkit-learn Author: lensacom File: test_rdd.py License: Apache License 2.0 | 5 votes |
def test_fmod(self): A, A_rdd = self.make_dense_rdd((8, 3)) B, B_rdd = self.make_dense_rdd((1, 3)) np_res = np.fmod(A, B) assert_array_equal( A_rdd.fmod(B).toarray(), np_res )