Python numpy.polyder() Examples
The following are 26 code examples for showing how to use numpy.polyder(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: ocelot Author: ocelot-collab File: k_analysis.py License: GNU General Public License v3.0 | 6 votes |
def data_analysis(e_ph, flux, method="least"): if method == "least": coeffs = np.polyfit(x=e_ph, y=flux, deg=11) polynom = np.poly1d(coeffs) x = np.linspace(e_ph[0], e_ph[-1], num=100) pd = np.polyder(polynom, m=1) indx = np.argmax(np.abs(pd(x))) eph_c = x[indx] pd2 = np.polyder(polynom, m=2) p2_roots = np.roots(pd2) p2_roots = p2_roots[p2_roots[:].imag == 0] p2_roots = np.real(p2_roots) Eph_fin = find_nearest(p2_roots,eph_c) return Eph_fin, polynom elif method == "new method": pass #plt.plot(Etotal, total, "ro") #plt.plot(x, polynom(x))
Example 2
Project: pyiron Author: pyiron File: thermo_bulk.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def get_minimum_energy_path(self, pressure=None): """ Args: pressure: Returns: """ if pressure is not None: raise NotImplemented() v_min_lst = [] for c in self._coeff.T: v_min = np.roots(np.polyder(c, 1)) p_der2 = np.polyder(c, 2) p_val2 = np.polyval(p_der2, v_min) v_m_lst = v_min[p_val2 > 0] if len(v_m_lst) > 0: v_min_lst.append(v_m_lst[0]) else: v_min_lst.append(np.nan) return np.array(v_min_lst)
Example 3
Project: recruit Author: Frank-qlu File: test_regression.py License: Apache License 2.0 | 5 votes |
def test_polyder_return_type(self): # Ticket #1249 assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d)) assert_(isinstance(np.polyder([1], 0), np.ndarray)) assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d)) assert_(isinstance(np.polyder([1], 1), np.ndarray))
Example 4
Project: lambda-packs Author: ryfeus File: test_regression.py License: MIT License | 5 votes |
def test_polyder_return_type(self): # Ticket #1249 assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d)) assert_(isinstance(np.polyder([1], 0), np.ndarray)) assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d)) assert_(isinstance(np.polyder([1], 1), np.ndarray))
Example 5
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_regression.py License: MIT License | 5 votes |
def test_polyder_return_type(self): # Ticket #1249 assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d)) assert_(isinstance(np.polyder([1], 0), np.ndarray)) assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d)) assert_(isinstance(np.polyder([1], 1), np.ndarray))
Example 6
Project: vnpy_crypto Author: birforce File: test_regression.py License: MIT License | 5 votes |
def test_polyder_return_type(self): # Ticket #1249 assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d)) assert_(isinstance(np.polyder([1], 0), np.ndarray)) assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d)) assert_(isinstance(np.polyder([1], 1), np.ndarray))
Example 7
Project: Computable Author: ktraunmueller File: test_regression.py License: MIT License | 5 votes |
def test_polyder_return_type(self): """Ticket #1249""" assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d)) assert_(isinstance(np.polyder([1], 0), np.ndarray)) assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d)) assert_(isinstance(np.polyder([1], 1), np.ndarray))
Example 8
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_regression.py License: MIT License | 5 votes |
def test_polyder_return_type(self): # Ticket #1249 assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d)) assert_(isinstance(np.polyder([1], 0), np.ndarray)) assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d)) assert_(isinstance(np.polyder([1], 1), np.ndarray))
Example 9
Project: pwtools Author: elcorto File: num.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def polyval(fit, points, der=0): """Evaluate polynomial generated by :func:`polyfit` on `points`. Parameters ---------- fit, points : see :func:`polyfit` der : int, optional Derivative order. Only for 1D, uses np.polyder(). Notes ----- For 1D we provide "analytic" derivatives using np.polyder(). For ND, we didn't implement an equivalent machinery. For 2D, you might get away with fitting a bispline (see Interpol2D) and use it's derivs. For ND, try rbf.py's RBF interpolator which has at least 1st derivatives for arbitrary dimensions. See Also -------- :class:`PolyFit`, :class:`PolyFit1D`, :func:`polyfit` """ assert points.ndim == 2, "points must be 2d array" pscale, pmin = fit['pscale'], fit['pmin'] vscale, vmin = fit['vscale'], fit['vmin'] if der > 0: assert points.shape[1] == 1, "deriv only for 1d poly (ndim=1)" # ::-1 b/c numpy stores poly coeffs in reversed order dcoeffs = np.polyder(fit['coeffs'][::-1], m=der) return np.polyval(dcoeffs, (points[:,0] - pmin[0,0]) / pscale[0,0]) / \ pscale[0,0]**der * vscale else: vand = vander((points - pmin) / pscale, fit['deg']) return np.dot(vand, fit['coeffs']) * vscale + vmin
Example 10
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_regression.py License: MIT License | 5 votes |
def test_polyder_return_type(self): # Ticket #1249 assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d)) assert_(isinstance(np.polyder([1], 0), np.ndarray)) assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d)) assert_(isinstance(np.polyder([1], 1), np.ndarray))
Example 11
Project: predictive-maintenance-using-machine-learning Author: awslabs File: test_regression.py License: Apache License 2.0 | 5 votes |
def test_polyder_return_type(self): # Ticket #1249 assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d)) assert_(isinstance(np.polyder([1], 0), np.ndarray)) assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d)) assert_(isinstance(np.polyder([1], 1), np.ndarray))
Example 12
Project: pySINDy Author: luckystarufo File: test_regression.py License: MIT License | 5 votes |
def test_polyder_return_type(self): # Ticket #1249 assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d)) assert_(isinstance(np.polyder([1], 0), np.ndarray)) assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d)) assert_(isinstance(np.polyder([1], 1), np.ndarray))
Example 13
Project: mxnet-lambda Author: awslabs File: test_regression.py License: Apache License 2.0 | 5 votes |
def test_polyder_return_type(self): # Ticket #1249 assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d)) assert_(isinstance(np.polyder([1], 0), np.ndarray)) assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d)) assert_(isinstance(np.polyder([1], 1), np.ndarray))
Example 14
Project: ImageFusion Author: pfchai File: test_regression.py License: MIT License | 5 votes |
def test_polyder_return_type(self): # Ticket #1249 assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d)) assert_(isinstance(np.polyder([1], 0), np.ndarray)) assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d)) assert_(isinstance(np.polyder([1], 1), np.ndarray))
Example 15
Project: reportgen Author: gasongjian File: questionnaire.py License: MIT License | 5 votes |
def clean_ftime(ftime,cut_percent=0.25): ''' ftime 是完成问卷的秒数 思路: 1、只考虑截断问卷完成时间较小的样本 2、找到完成时间变化的拐点,即需要截断的时间点 返回:r 建议截断<r的样本 ''' t_min=int(ftime.min()) t_cut=int(ftime.quantile(cut_percent)) x=np.array(range(t_min,t_cut)) y=np.array([len(ftime[ftime<=i]) for i in range(t_min,t_cut)]) z1 = np.polyfit(x, y, 4) # 拟合得到的函数 z2=np.polyder(z1,2) #求二阶导数 r=np.roots(np.polyder(z2,1)) r=int(r[0]) return r ## =========================================================== # # # 数据分析和输出 # # # ## ==========================================================
Example 16
Project: elasticintel Author: securityclippy File: test_regression.py License: GNU General Public License v3.0 | 5 votes |
def test_polyder_return_type(self): # Ticket #1249 assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d)) assert_(isinstance(np.polyder([1], 0), np.ndarray)) assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d)) assert_(isinstance(np.polyder([1], 1), np.ndarray))
Example 17
Project: coffeegrindsize Author: jgagneastro File: test_regression.py License: MIT License | 5 votes |
def test_polyder_return_type(self): # Ticket #1249 assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d)) assert_(isinstance(np.polyder([1], 0), np.ndarray)) assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d)) assert_(isinstance(np.polyder([1], 1), np.ndarray))
Example 18
Project: uav_trajectories Author: whoenig File: generate_trajectory.py License: MIT License | 5 votes |
def func_eq_constraint_der(coefficients, i, piece_length, order): result = 0 last_der = np.polyder(coefficients[(i-1)*8:i*8], order) this_der = np.polyder(coefficients[i*8:(i+1)*8], order) end_val = np.polyval(last_der, piece_length) start_val = np.polyval(this_der, 0) return end_val - start_val
Example 19
Project: uav_trajectories Author: whoenig File: generate_trajectory.py License: MIT License | 5 votes |
def func_eq_constraint_der_value(coefficients, i, t, desired_value, order): result = 0 der = np.polyder(coefficients[i*8:(i+1)*8], order) value = np.polyval(der, t) return value - desired_value # def func_eq_constraint(coefficients, tss, yawss): # result = 0 # last_derivative = None # for ts, yaws, i in zip(tss, yawss, range(0, len(tss))): # derivative = np.polyder(coefficients[i*8:(i+1)*8]) # if last_derivative is not None: # result += np.polyval(derivative, 0) - last_derivative # last_derivative = np.polyval(derivative, tss[-1]) # # apply coefficients to trajectory # for i,p in enumerate(traj.polynomials): # p.pyaw.p = coefficients[i*8:(i+1)*8] # # evaluate at each timestep and compute the sum of squared differences # result = 0 # for t,yaw in zip(ts,yaws): # e = traj.eval(t) # result += (e.yaw - yaw) ** 2 # return result
Example 20
Project: uav_trajectories Author: whoenig File: auto_yaw_trajectory.py License: MIT License | 5 votes |
def func_eq_constraint_der(coefficients, i, tss, yawss): result = 0 last_der = np.polyder(coefficients[(i-1)*8:i*8]) this_der = np.polyder(coefficients[i*8:(i+1)*8]) end_val = np.polyval(last_der, tss[i-1][-1]) start_val = np.polyval(this_der, tss[i][0]) return end_val - start_val
Example 21
Project: uav_trajectories Author: whoenig File: auto_yaw_trajectory.py License: MIT License | 5 votes |
def func_eq_constraint_der_value(coefficients, i, t, desired_value): result = 0 der = np.polyder(coefficients[i*8:(i+1)*8]) value = np.polyval(der, t) return value - desired_value # def func_eq_constraint(coefficients, tss, yawss): # result = 0 # last_derivative = None # for ts, yaws, i in zip(tss, yawss, range(0, len(tss))): # derivative = np.polyder(coefficients[i*8:(i+1)*8]) # if last_derivative is not None: # result += np.polyval(derivative, 0) - last_derivative # last_derivative = np.polyval(derivative, tss[-1]) # # apply coefficients to trajectory # for i,p in enumerate(traj.polynomials): # p.pyaw.p = coefficients[i*8:(i+1)*8] # # evaluate at each timestep and compute the sum of squared differences # result = 0 # for t,yaw in zip(ts,yaws): # e = traj.eval(t) # result += (e.yaw - yaw) ** 2 # return result
Example 22
Project: Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda Author: PacktPublishing File: test_regression.py License: MIT License | 5 votes |
def test_polyder_return_type(self): # Ticket #1249 assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d)) assert_(isinstance(np.polyder([1], 0), np.ndarray)) assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d)) assert_(isinstance(np.polyder([1], 1), np.ndarray))
Example 23
Project: twitter-stock-recommendation Author: alvarobartt File: test_regression.py License: MIT License | 5 votes |
def test_polyder_return_type(self): # Ticket #1249 assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d)) assert_(isinstance(np.polyder([1], 0), np.ndarray)) assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d)) assert_(isinstance(np.polyder([1], 1), np.ndarray))
Example 24
Project: keras-lambda Author: sunilmallya File: test_regression.py License: MIT License | 5 votes |
def test_polyder_return_type(self): # Ticket #1249 assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d)) assert_(isinstance(np.polyder([1], 0), np.ndarray)) assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d)) assert_(isinstance(np.polyder([1], 1), np.ndarray))
Example 25
Project: simnibs Author: simnibs File: ni.py License: GNU General Public License v3.0 | 4 votes |
def localsens(self, coeffs, xi): """ Determine the local derivative based sensitivity coefficients in the point of operation xi (normalized coordinates!). example: xi = np.array([[0,0,...,0]]) size: [1 x DIM] localsens = calc_localsens(self, coeffs, xi) input: coeffs ... gpc coefficients, np.array() [N_coeffs x N_out] xi ... point in variable space to evaluate local sensitivity in (norm. coordinates) np.array() [1 x DIM] output: localsens ... local sensitivity coefficients, np.array() [DIM x N_out] """ Nmax = len(self.poly) self.poly_der = [[0 for x in range(self.DIM)] for x in range(Nmax+1)] poly_der_xi = [[0 for x in range(self.DIM)] for x in range(Nmax+1)] poly_opvals = [[0 for x in range(self.DIM)] for x in range(Nmax+1)] # preprocess polynomials for i_DIM in range(self.DIM): for i_order in range(Nmax+1): # evaluate the derivatives of the polynomials self.poly_der[i_order][i_DIM] = np.polyder(self.poly[i_order][i_DIM]) # evaluate poly and poly_der at point of operation poly_opvals[i_order][i_DIM] = self.poly[i_order][i_DIM](xi[1,i_DIM]) poly_der_xi[i_order][i_DIM] = self.poly_der[i_order][i_DIM](xi[1,i_DIM]) N_vals = 1 poly_sens = np.zeros([self.DIM, self.N_poly]) for i_sens in range(self.DIM): for i_poly in range(self.N_poly): A1 = np.ones(N_vals) # construct polynomial basis according to partial derivatives for i_DIM in range(self.DIM): if i_DIM == i_sens: A1 *= poly_der_xi[self.poly_idx[i_poly][i_DIM]][i_DIM] else: A1 *= poly_opvals[self.poly_idx[i_poly][i_DIM]][i_DIM] poly_sens[i_sens,i_poly] = A1 # sum up over all coefficients # [DIM x N_points] = [DIM x N_poly] * [N_poly x N_points] localsens = np.dot(poly_sens,coeffs) return localsens
Example 26
Project: TheCannon Author: annayqho File: train_model.py License: MIT License | 4 votes |
def _do_one_regression(lams, fluxes, ivars, lvec): """ Optimizes to find the scatter associated with the best-fit model. This scatter is the deviation between the observed spectrum and the model. It is wavelength-independent, so we perform this at a single wavelength. Input ----- lams: numpy ndarray the common wavelength array fluxes: numpy ndarray pixel intensities ivars: numpy ndarray inverse variances associated with pixel intensities lvec = numpy ndarray the label vector Output ----- output of do_one_regression_at_fixed_scatter """ ln_scatter_vals = np.arange(np.log(0.0001), 0., 0.5) # minimize over the range of scatter possibilities chis_eval = np.zeros_like(ln_scatter_vals) for jj, ln_scatter_val in enumerate(ln_scatter_vals): coeff, lTCinvl, chi, logdet_Cinv = \ _do_one_regression_at_fixed_scatter(lams, fluxes, ivars, lvec, np.exp(ln_scatter_val)) chis_eval[jj] = np.sum(chi*chi) - logdet_Cinv if np.any(np.isnan(chis_eval)): best_scatter = np.exp(ln_scatter_vals[-1]) _r = _do_one_regression_at_fixed_scatter(lams, fluxes, ivars, lvec, best_scatter) return _r + (best_scatter, ) lowest = np.argmin(chis_eval) if (lowest == 0) or (lowest == len(ln_scatter_vals) - 1): best_scatter = np.exp(ln_scatter_vals[lowest]) _r = _do_one_regression_at_fixed_scatter(lams, fluxes, ivars, lvec, best_scatter) return _r + (best_scatter, ) ln_scatter_vals_short = ln_scatter_vals[np.array( [lowest-1, lowest, lowest+1])] chis_eval_short = chis_eval[np.array([lowest-1, lowest, lowest+1])] z = np.polyfit(ln_scatter_vals_short, chis_eval_short, 2) fit_pder = np.polyder(z) best_scatter = np.exp(np.roots(fit_pder)[0]) _r = _do_one_regression_at_fixed_scatter(lams, fluxes, ivars, lvec, best_scatter) return _r + (best_scatter, )