Python numpy.object_() Examples
The following are 30 code examples for showing how to use numpy.object_(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: recruit Author: Frank-qlu File: test_regression.py License: Apache License 2.0 | 6 votes |
def test_object_array_refcount_self_assign(self): # Ticket #711 class VictimObject(object): deleted = False def __del__(self): self.deleted = True d = VictimObject() arr = np.zeros(5, dtype=np.object_) arr[:] = d del d arr[:] = arr # refcount of 'd' might hit zero here assert_(not arr[0].deleted) arr[:] = arr # trying to induce a segfault by doing it again... assert_(not arr[0].deleted)
Example 2
Project: recruit Author: Frank-qlu File: test_base.py License: Apache License 2.0 | 6 votes |
def test_constructor_from_index_dtlike(self, cast_as_obj, index): if cast_as_obj: result = pd.Index(index.astype(object)) else: result = pd.Index(index) tm.assert_index_equal(result, index) if isinstance(index, pd.DatetimeIndex): assert result.tz == index.tz if cast_as_obj: # GH#23524 check that Index(dti, dtype=object) does not # incorrectly raise ValueError, and that nanoseconds are not # dropped index += pd.Timedelta(nanoseconds=50) result = pd.Index(index, dtype=object) assert result.dtype == np.object_ assert list(result) == list(index)
Example 3
Project: recruit Author: Frank-qlu File: test_dtypes.py License: Apache License 2.0 | 6 votes |
def test_astype_datetime(self): s = Series(iNaT, dtype='M8[ns]', index=lrange(5)) s = s.astype('O') assert s.dtype == np.object_ s = Series([datetime(2001, 1, 2, 0, 0)]) s = s.astype('O') assert s.dtype == np.object_ s = Series([datetime(2001, 1, 2, 0, 0) for i in range(3)]) s[1] = np.nan assert s.dtype == 'M8[ns]' s = s.astype('O') assert s.dtype == np.object_
Example 4
Project: recruit Author: Frank-qlu File: test_constructors.py License: Apache License 2.0 | 6 votes |
def test_fromDict(self): data = {'a': 0, 'b': 1, 'c': 2, 'd': 3} series = Series(data) assert tm.is_sorted(series.index) data = {'a': 0, 'b': '1', 'c': '2', 'd': datetime.now()} series = Series(data) assert series.dtype == np.object_ data = {'a': 0, 'b': '1', 'c': '2', 'd': '3'} series = Series(data) assert series.dtype == np.object_ data = {'a': '0', 'b': '1'} series = Series(data, dtype=float) assert series.dtype == np.float64
Example 5
Project: recruit Author: Frank-qlu File: test_constructors.py License: Apache License 2.0 | 6 votes |
def test_fromValue(self, datetime_series): nans = Series(np.NaN, index=datetime_series.index) assert nans.dtype == np.float_ assert len(nans) == len(datetime_series) strings = Series('foo', index=datetime_series.index) assert strings.dtype == np.object_ assert len(strings) == len(datetime_series) d = datetime.now() dates = Series(d, index=datetime_series.index) assert dates.dtype == 'M8[ns]' assert len(dates) == len(datetime_series) # GH12336 # Test construction of categorical series from value categorical = Series(0, index=datetime_series.index, dtype="category") expected = Series(0, index=datetime_series.index).astype("category") assert categorical.dtype == 'category' assert len(categorical) == len(datetime_series) tm.assert_series_equal(categorical, expected)
Example 6
Project: recruit Author: Frank-qlu File: test_strings.py License: Apache License 2.0 | 6 votes |
def test_zfill(self): values = Series(['1', '22', 'aaa', '333', '45678']) result = values.str.zfill(5) expected = Series(['00001', '00022', '00aaa', '00333', '45678']) tm.assert_series_equal(result, expected) expected = np.array([v.zfill(5) for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) result = values.str.zfill(3) expected = Series(['001', '022', 'aaa', '333', '45678']) tm.assert_series_equal(result, expected) expected = np.array([v.zfill(3) for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) values = Series(['1', np.nan, 'aaa', np.nan, '45678']) result = values.str.zfill(5) expected = Series(['00001', np.nan, '00aaa', np.nan, '45678']) tm.assert_series_equal(result, expected)
Example 7
Project: recruit Author: Frank-qlu File: test_groupby.py License: Apache License 2.0 | 6 votes |
def test_convert_objects_leave_decimal_alone(): s = Series(lrange(5)) labels = np.array(['a', 'b', 'c', 'd', 'e'], dtype='O') def convert_fast(x): return Decimal(str(x.mean())) def convert_force_pure(x): # base will be length 0 assert (len(x.values.base) > 0) return Decimal(str(x.mean())) grouped = s.groupby(labels) result = grouped.agg(convert_fast) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) result = grouped.agg(convert_force_pure) assert result.dtype == np.object_ assert isinstance(result[0], Decimal)
Example 8
Project: recruit Author: Frank-qlu File: test_analytics.py License: Apache License 2.0 | 6 votes |
def test_stat_operators_attempt_obj_array(self, method): # GH 676 data = { 'a': [-0.00049987540199591344, -0.0016467257772919831, 0.00067695870775883013], 'b': [-0, -0, 0.0], 'c': [0.00031111847529610595, 0.0014902627951905339, -0.00094099200035979691] } df1 = DataFrame(data, index=['foo', 'bar', 'baz'], dtype='O') df2 = DataFrame({0: [np.nan, 2], 1: [np.nan, 3], 2: [np.nan, 4]}, dtype=object) for df in [df1, df2]: assert df.values.dtype == np.object_ result = getattr(df, method)(1) expected = getattr(df.astype('f8'), method)(1) if method in ['sum', 'prod']: tm.assert_series_equal(result, expected)
Example 9
Project: recruit Author: Frank-qlu File: test_constructors.py License: Apache License 2.0 | 6 votes |
def test_constructor_dict_cast(self): # cast float tests test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } frame = DataFrame(test_data, dtype=float) assert len(frame) == 3 assert frame['B'].dtype == np.float64 assert frame['A'].dtype == np.float64 frame = DataFrame(test_data) assert len(frame) == 3 assert frame['B'].dtype == np.object_ assert frame['A'].dtype == np.float64 # can't cast to float test_data = { 'A': dict(zip(range(20), tm.makeStringIndex(20))), 'B': dict(zip(range(15), np.random.randn(15))) } frame = DataFrame(test_data, dtype=float) assert len(frame) == 20 assert frame['A'].dtype == np.object_ assert frame['B'].dtype == np.float64
Example 10
Project: recruit Author: Frank-qlu File: test_dtypes.py License: Apache License 2.0 | 6 votes |
def test_is_dtype(self): assert PeriodDtype.is_dtype(self.dtype) assert PeriodDtype.is_dtype('period[D]') assert PeriodDtype.is_dtype('period[3D]') assert PeriodDtype.is_dtype(PeriodDtype('3D')) assert PeriodDtype.is_dtype('period[U]') assert PeriodDtype.is_dtype('period[S]') assert PeriodDtype.is_dtype(PeriodDtype('U')) assert PeriodDtype.is_dtype(PeriodDtype('S')) assert not PeriodDtype.is_dtype('D') assert not PeriodDtype.is_dtype('3D') assert not PeriodDtype.is_dtype('U') assert not PeriodDtype.is_dtype('S') assert not PeriodDtype.is_dtype('foo') assert not PeriodDtype.is_dtype(np.object_) assert not PeriodDtype.is_dtype(np.int64) assert not PeriodDtype.is_dtype(np.float64)
Example 11
Project: recruit Author: Frank-qlu File: test_dtypes.py License: Apache License 2.0 | 6 votes |
def test_is_dtype(self): assert IntervalDtype.is_dtype(self.dtype) assert IntervalDtype.is_dtype('interval') assert IntervalDtype.is_dtype(IntervalDtype('float64')) assert IntervalDtype.is_dtype(IntervalDtype('int64')) assert IntervalDtype.is_dtype(IntervalDtype(np.int64)) assert not IntervalDtype.is_dtype('D') assert not IntervalDtype.is_dtype('3D') assert not IntervalDtype.is_dtype('U') assert not IntervalDtype.is_dtype('S') assert not IntervalDtype.is_dtype('foo') assert not IntervalDtype.is_dtype('IntervalA') assert not IntervalDtype.is_dtype(np.object_) assert not IntervalDtype.is_dtype(np.int64) assert not IntervalDtype.is_dtype(np.float64)
Example 12
Project: esmlab Author: NCAR File: core.py License: Apache License 2.0 | 5 votes |
def isdecoded(self, obj): return obj.dtype.type in {np.str_, np.object_, np.datetime64}
Example 13
Project: arctic Author: man-group File: tickstore.py License: GNU Lesser General Public License v2.1 | 5 votes |
def _empty(self, length, dtype): if dtype is not None and dtype == np.float64: rtn = np.empty(length, dtype) rtn[:] = np.nan return rtn else: return np.empty(length, dtype=np.object_)
Example 14
Project: recruit Author: Frank-qlu File: test_io.py License: Apache License 2.0 | 5 votes |
def test_converters_cornercases(self): # Test the conversion to datetime. converter = { 'date': lambda s: strptime(s, '%Y-%m-%d %H:%M:%SZ')} data = TextIO('2009-02-03 12:00:00Z, 72214.0') test = np.ndfromtxt(data, delimiter=',', dtype=None, names=['date', 'stid'], converters=converter) control = np.array((datetime(2009, 2, 3), 72214.), dtype=[('date', np.object_), ('stid', float)]) assert_equal(test, control)
Example 15
Project: recruit Author: Frank-qlu File: test_nanfunctions.py License: Apache License 2.0 | 5 votes |
def test_dtype_error(self): for f in self.nanfuncs: for dtype in [np.bool_, np.int_, np.object_]: assert_raises(TypeError, f, _ndat, axis=1, dtype=dtype)
Example 16
Project: recruit Author: Frank-qlu File: test_nanfunctions.py License: Apache License 2.0 | 5 votes |
def test_out_dtype_error(self): for f in self.nanfuncs: for dtype in [np.bool_, np.int_, np.object_]: out = np.empty(_ndat.shape[0], dtype=dtype) assert_raises(TypeError, f, _ndat, axis=1, out=out)
Example 17
Project: recruit Author: Frank-qlu File: test_polynomial.py License: Apache License 2.0 | 5 votes |
def test_objects(self): from decimal import Decimal p = np.poly1d([Decimal('4.0'), Decimal('3.0'), Decimal('2.0')]) p2 = p * Decimal('1.333333333333333') assert_(p2[1] == Decimal("3.9999999999999990")) p2 = p.deriv() assert_(p2[1] == Decimal('8.0')) p2 = p.integ() assert_(p2[3] == Decimal("1.333333333333333333333333333")) assert_(p2[2] == Decimal('1.5')) assert_(np.issubdtype(p2.coeffs.dtype, np.object_)) p = np.poly([Decimal(1), Decimal(2)]) assert_equal(np.poly([Decimal(1), Decimal(2)]), [1, Decimal(-3), Decimal(2)])
Example 18
Project: recruit Author: Frank-qlu File: test_defchararray.py License: Apache License 2.0 | 5 votes |
def test_rsplit(self): A = self.A.rsplit(b'3') tgt = [[[b' abc '], [b'']], [[b'12', b'45'], [b'MixedCase']], [[b'12', b' \t ', b'45 \x00 '], [b'UPPER']]] assert_(issubclass(A.dtype.type, np.object_)) assert_equal(A.tolist(), tgt)
Example 19
Project: recruit Author: Frank-qlu File: test_defchararray.py License: Apache License 2.0 | 5 votes |
def test_split(self): A = self.A.split(b'3') tgt = [ [[b' abc '], [b'']], [[b'12', b'45'], [b'MixedCase']], [[b'12', b' \t ', b'45 \x00 '], [b'UPPER']]] assert_(issubclass(A.dtype.type, np.object_)) assert_equal(A.tolist(), tgt)
Example 20
Project: recruit Author: Frank-qlu File: test_defchararray.py License: Apache License 2.0 | 5 votes |
def test_splitlines(self): A = np.char.array(['abc\nfds\nwer']).splitlines() assert_(issubclass(A.dtype.type, np.object_)) assert_(A.shape == (1,)) assert_(len(A[0]) == 3)
Example 21
Project: recruit Author: Frank-qlu File: test_umath.py License: Apache License 2.0 | 5 votes |
def test_lcm_object(self): self._test_lcm_inner(np.object_)
Example 22
Project: recruit Author: Frank-qlu File: test_regression.py License: Apache License 2.0 | 5 votes |
def test_unpickle_dtype_with_object(self): # Implemented in r2840 dt = np.dtype([('x', int), ('y', np.object_), ('z', 'O')]) for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): f = BytesIO() pickle.dump(dt, f, protocol=proto) f.seek(0) dt_ = pickle.load(f) f.close() assert_equal(dt, dt_)
Example 23
Project: recruit Author: Frank-qlu File: test_regression.py License: Apache License 2.0 | 5 votes |
def test_mem_array_creation_invalid_specification(self): # Ticket #196 dt = np.dtype([('x', int), ('y', np.object_)]) # Wrong way assert_raises(ValueError, np.array, [1, 'object'], dt) # Correct way np.array([(1, 'object')], dt)
Example 24
Project: recruit Author: Frank-qlu File: test_regression.py License: Apache License 2.0 | 5 votes |
def test_for_object_scalar_creation(self): # Ticket #816 a = np.object_() b = np.object_(3) b2 = np.object_(3.0) c = np.object_([4, 5]) d = np.object_([None, {}, []]) assert_(a is None) assert_(type(b) is int) assert_(type(b2) is float) assert_(type(c) is np.ndarray) assert_(c.dtype == object) assert_(d.dtype == object)
Example 25
Project: recruit Author: Frank-qlu File: test_regression.py License: Apache License 2.0 | 5 votes |
def test_object_array_to_fixed_string(self): # Ticket #1235. a = np.array(['abcdefgh', 'ijklmnop'], dtype=np.object_) b = np.array(a, dtype=(np.str_, 8)) assert_equal(a, b) c = np.array(a, dtype=(np.str_, 5)) assert_equal(c, np.array(['abcde', 'ijklm'])) d = np.array(a, dtype=(np.str_, 12)) assert_equal(a, d) e = np.empty((2, ), dtype=(np.str_, 8)) e[:] = a[:] assert_equal(a, e)
Example 26
Project: recruit Author: Frank-qlu File: test_panel.py License: Apache License 2.0 | 5 votes |
def test_setitem(self): lp = self.panel.filter(['ItemA', 'ItemB']).to_frame() with pytest.raises(TypeError): self.panel['ItemE'] = lp # DataFrame df = self.panel['ItemA'][2:].filter(items=['A', 'B']) self.panel['ItemF'] = df self.panel['ItemE'] = df df2 = self.panel['ItemF'] assert_frame_equal(df, df2.reindex( index=df.index, columns=df.columns)) # scalar self.panel['ItemG'] = 1 self.panel['ItemE'] = True assert self.panel['ItemG'].values.dtype == np.int64 assert self.panel['ItemE'].values.dtype == np.bool_ # object dtype self.panel['ItemQ'] = 'foo' assert self.panel['ItemQ'].values.dtype == np.object_ # boolean dtype self.panel['ItemP'] = self.panel['ItemA'] > 0 assert self.panel['ItemP'].values.dtype == np.bool_ pytest.raises(TypeError, self.panel.__setitem__, 'foo', self.panel.loc[['ItemP']]) # bad shape p = Panel(np.random.randn(4, 3, 2)) msg = (r"shape of value must be \(3, 2\), " r"shape of given object was \(4, 2\)") with pytest.raises(ValueError, match=msg): p[0] = np.random.randn(4, 2)
Example 27
Project: recruit Author: Frank-qlu File: test_panel.py License: Apache License 2.0 | 5 votes |
def test_from_dict_mixed_orient(self): df = tm.makeDataFrame() df['foo'] = 'bar' data = {'k1': df, 'k2': df} panel = Panel.from_dict(data, orient='minor') assert panel['foo'].values.dtype == np.object_ assert panel['A'].values.dtype == np.float64
Example 28
Project: recruit Author: Frank-qlu File: test_internals.py License: Apache License 2.0 | 5 votes |
def test_set(self): mgr = create_mgr('a,b,c: int', item_shape=(3, )) mgr.set('d', np.array(['foo'] * 3)) mgr.set('b', np.array(['bar'] * 3)) tm.assert_numpy_array_equal(mgr.get('a').internal_values(), np.array([0] * 3)) tm.assert_numpy_array_equal(mgr.get('b').internal_values(), np.array(['bar'] * 3, dtype=np.object_)) tm.assert_numpy_array_equal(mgr.get('c').internal_values(), np.array([2] * 3)) tm.assert_numpy_array_equal(mgr.get('d').internal_values(), np.array(['foo'] * 3, dtype=np.object_))
Example 29
Project: recruit Author: Frank-qlu File: test_internals.py License: Apache License 2.0 | 5 votes |
def test_set_change_dtype(self, mgr): mgr.set('baz', np.zeros(N, dtype=bool)) mgr.set('baz', np.repeat('foo', N)) assert mgr.get('baz').dtype == np.object_ mgr2 = mgr.consolidate() mgr2.set('baz', np.repeat('foo', N)) assert mgr2.get('baz').dtype == np.object_ mgr2.set('quux', randn(N).astype(int)) assert mgr2.get('quux').dtype == np.int_ mgr2.set('quux', randn(N)) assert mgr2.get('quux').dtype == np.float_
Example 30
Project: recruit Author: Frank-qlu File: test_internals.py License: Apache License 2.0 | 5 votes |
def test_get_numeric_data(self): mgr = create_mgr('int: int; float: float; complex: complex;' 'str: object; bool: bool; obj: object; dt: datetime', item_shape=(3, )) mgr.set('obj', np.array([1, 2, 3], dtype=np.object_)) numeric = mgr.get_numeric_data() tm.assert_index_equal(numeric.items, pd.Index(['int', 'float', 'complex', 'bool'])) assert_almost_equal( mgr.get('float', fastpath=False), numeric.get('float', fastpath=False)) assert_almost_equal( mgr.get('float').internal_values(), numeric.get('float').internal_values()) # Check sharing numeric.set('float', np.array([100., 200., 300.])) assert_almost_equal( mgr.get('float', fastpath=False), np.array([100., 200., 300.])) assert_almost_equal( mgr.get('float').internal_values(), np.array([100., 200., 300.])) numeric2 = mgr.get_numeric_data(copy=True) tm.assert_index_equal(numeric.items, pd.Index(['int', 'float', 'complex', 'bool'])) numeric2.set('float', np.array([1000., 2000., 3000.])) assert_almost_equal( mgr.get('float', fastpath=False), np.array([100., 200., 300.])) assert_almost_equal( mgr.get('float').internal_values(), np.array([100., 200., 300.]))