Build Status Coverage Status DOI JOSS

carl is a toolbox for likelihood-free inference in Python.

The likelihood function is the central object that summarizes the information from an experiment needed for inference of model parameters. It is key to many areas of science that report the results of classical hypothesis tests or confidence intervals using the (generalized or profile) likelihood ratio as a test statistic. At the same time, with the advance of computing technology, it has become increasingly common that a simulator (or generative model) is used to describe complex processes that tie parameters of an underlying theory and measurement apparatus to high-dimensional observations. However, directly evaluating the likelihood function in these cases is often impossible or is computationally impractical.

In this context, the goal of this package is to provide tools for the likelihood-free setup, including likelihood (or density) ratio estimation algorithms, along with helpers to carry out inference on top of these. It currently supports:

This project is still in its early stage of development. Join us if you feel like contributing!



The following dependencies are required:

Once satisfied, carl can be installed from source using the following commands:

git clone
cd carl
python install

See for setup instructions to start developing and contributing to carl.


  author       = {Gilles Louppe and Kyle Cranmer and Juan Pavez},
  title        = {carl: a likelihood-free inference toolbox},
  month        = mar,
  year         = 2016,
  doi          = {10.5281/zenodo.47798},
  url          = {}