```import numpy as np
import pandas as pd
import pandas.compat as compat

class TablePlotter(object):
"""
Layout some DataFrames in vertical/horizontal layout for explanation.
Used in merging.rst
"""

def __init__(self, cell_width=0.37, cell_height=0.25, font_size=7.5):
self.cell_width = cell_width
self.cell_height = cell_height
self.font_size = font_size

def _shape(self, df):
"""
Calculate table chape considering index levels.
"""

row, col = df.shape
return row + df.columns.nlevels, col + df.index.nlevels

def _get_cells(self, left, right, vertical):
"""
Calculate appropriate figure size based on left and right data.
"""

if vertical:
# calcurate required number of cells
vcells = max(sum([self._shape(l)[0] for l in left]),
self._shape(right)[0])
hcells = (max([self._shape(l)[1] for l in left]) +
self._shape(right)[1])
else:
vcells = max([self._shape(l)[0] for l in left] +
[self._shape(right)[0]])
hcells = sum([self._shape(l)[1] for l in left] +
[self._shape(right)[1]])
return hcells, vcells

def plot(self, left, right, labels=None, vertical=True):
"""
Plot left / right DataFrames in specified layout.

Parameters
----------
left : list of DataFrames before operation is applied
right : DataFrame of operation result
labels : list of str to be drawn as titles of left DataFrames
vertical : bool
If True, use vertical layout. If False, use horizontal layout.
"""
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

if not isinstance(left, list):
left = [left]
left = [self._conv(l) for l in left]
right = self._conv(right)

hcells, vcells = self._get_cells(left, right, vertical)

if vertical:
figsize = self.cell_width * hcells, self.cell_height * vcells
else:
# include margin for titles
figsize = self.cell_width * hcells, self.cell_height * vcells
fig = plt.figure(figsize=figsize)

if vertical:
gs = gridspec.GridSpec(len(left), hcells)
# left
max_left_cols = max([self._shape(l)[1] for l in left])
max_left_rows = max([self._shape(l)[0] for l in left])
for i, (l, label) in enumerate(zip(left, labels)):
self._make_table(ax, l, title=label,
height=1.0 / max_left_rows)
# right
ax = plt.subplot(gs[:, max_left_cols:])
self._make_table(ax, right, title='Result', height=1.05 / vcells)
else:
max_rows = max([self._shape(df)[0] for df in left + [right]])
height = 1.0 / np.max(max_rows)
gs = gridspec.GridSpec(1, hcells)
# left
i = 0
for l, label in zip(left, labels):
sp = self._shape(l)
ax = fig.add_subplot(gs[0, i:i + sp[1]])
self._make_table(ax, l, title=label, height=height)
i += sp[1]
# right
ax = plt.subplot(gs[0, i:])
self._make_table(ax, right, title='Result', height=height)

return fig

def _conv(self, data):
"""Convert each input to appropriate for table outplot"""
if isinstance(data, pd.Series):
if data.name is None:
data = data.to_frame(name='')
else:
data = data.to_frame()
data = data.fillna('NaN')
return data

def _insert_index(self, data):
# insert is destructive
data = data.copy()
idx_nlevels = data.index.nlevels
if idx_nlevels == 1:
data.insert(0, 'Index', data.index)
else:
for i in range(idx_nlevels):
data.insert(i, 'Index{0}'.format(i),
data.index._get_level_values(i))

col_nlevels = data.columns.nlevels
if col_nlevels > 1:
col = data.columns._get_level_values(0)
values = [data.columns._get_level_values(i).values
for i in range(1, col_nlevels)]
col_df = pd.DataFrame(values)
data.columns = col_df.columns
data = pd.concat([col_df, data])
data.columns = col
return data

def _make_table(self, ax, df, title, height=None):
if df is None:
ax.set_visible(False)
return

import pandas.plotting as plotting

idx_nlevels = df.index.nlevels
col_nlevels = df.columns.nlevels
# must be convert here to get index levels for colorization
df = self._insert_index(df)
tb = plotting.table(ax, df, loc=9)
tb.set_fontsize(self.font_size)

if height is None:
height = 1.0 / (len(df) + 1)

props = tb.properties()
for (r, c), cell in compat.iteritems(props['celld']):
if c == -1:
cell.set_visible(False)
elif r < col_nlevels and c < idx_nlevels:
cell.set_visible(False)
elif r < col_nlevels or c < idx_nlevels:
cell.set_facecolor('#AAAAAA')
cell.set_height(height)

ax.set_title(title, size=self.font_size)
ax.axis('off')

if __name__ == "__main__":
import matplotlib.pyplot as plt

p = TablePlotter()

df1 = pd.DataFrame({'A': [10, 11, 12],
'B': [20, 21, 22],
'C': [30, 31, 32]})
df2 = pd.DataFrame({'A': [10, 12],
'C': [30, 32]})

p.plot([df1, df2], pd.concat([df1, df2]),
labels=['df1', 'df2'], vertical=True)
plt.show()

df3 = pd.DataFrame({'X': [10, 12],
'Z': [30, 32]})

p.plot([df1, df3], pd.concat([df1, df3], axis=1),
labels=['df1', 'df2'], vertical=False)
plt.show()

idx = pd.MultiIndex.from_tuples([(1, 'A'), (1, 'B'), (1, 'C'),
(2, 'A'), (2, 'B'), (2, 'C')])
col = pd.MultiIndex.from_tuples([(1, 'A'), (1, 'B')])
df3 = pd.DataFrame({'v1': [1, 2, 3, 4, 5, 6],
'v2': [5, 6, 7, 8, 9, 10]},
index=idx)
df3.columns = col
p.plot(df3, df3, labels=['df3'])
plt.show()
```