#!/usr/bin/env python # -*- coding: utf-8 -*- # The MIT License (MIT) # Copyright (c) 2017 Juan Cabral # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ============================================================================= # DOC # ============================================================================= """""" # ============================================================================= # IMPORTS # ============================================================================= import numpy as np from .core import Extractor # ============================================================================= # EXTRACTOR CLASS # ============================================================================= class SlottedA_length(Extractor): r""" **SlottedA_length** - Slotted Autocorrelation In slotted autocorrelation, time lags are defined as intervals or slots instead of single values. The slotted autocorrelation function at a certain time lag slot is computed by averaging the cross product between samples whose time differences fall in the given slot. .. math:: \hat{\rho}(\tau=kh) = \frac {1}{\hat{\rho}(0)\,N_\tau} \sum_{t_i}\sum_{t_j= t_i+(k-1/2)h }^{t_i+(k+1/2)h} \bar{y}_i(t_i)\,\, \bar{y}_j(t_j) Where :math:`h` is the slot size, :math:`\bar{y}` is the normalized magnitude, :math:`\hat{\rho}(0)` is the slotted autocorrelation for the first lag, and :math:`N_\tau` is the number of pairs that fall in the given slot. .. code-block:: pycon >>> fs = feets.FeatureSpace( ... only=['SlottedA_length'], SlottedA_length={"t": 1}) >>> features, values = fs.extract(**lc_normal) >>> dict(zip(features, values)) {'SlottedA_length': 1.} **Parameters** - ``T``: tau - slot size in days (default=1). References ---------- .. [huijse2012information] Huijse, P., Estevez, P. A., Protopapas, P., Zegers, P., & Principe, J. C. (2012). An information theoretic algorithm for finding periodicities in stellar light curves. IEEE Transactions on Signal Processing, 60(10), 5135-5145. """ data = ["magnitude", "time"] features = ["SlottedA_length"] params = {"T": 1} def slotted_autocorrelation( self, data, time, T, K, second_round=False, K1=100 ): slots, i = np.zeros((K, 1)), 1 # make time start from 0 time = time - np.min(time) # subtract mean from mag values m = np.mean(data) data = data - m prod = np.zeros((K, 1)) pairs = np.subtract.outer(time, time) pairs[np.tril_indices_from(pairs)] = 10000000 ks = np.int64(np.floor(np.abs(pairs) / T + 0.5)) # We calculate the slotted autocorrelation for k=0 separately idx = np.where(ks == 0) prod[0] = (sum(data ** 2) + sum(data[idx[0]] * data[idx[1]])) / ( len(idx[0]) + len(data) ) slots[0] = 0 # We calculate it for the rest of the ks if second_round is False: for k in np.arange(1, K): idx = np.where(ks == k) if len(idx[0]) != 0: prod[k] = sum(data[idx[0]] * data[idx[1]]) / (len(idx[0])) slots[i] = k i = i + 1 else: prod[k] = np.infty else: for k in np.arange(K1, K): idx = np.where(ks == k) if len(idx[0]) != 0: prod[k] = sum(data[idx[0]] * data[idx[1]]) / (len(idx[0])) slots[i - 1] = k i = i + 1 else: prod[k] = np.infty np.trim_zeros(prod, trim="b") slots = np.trim_zeros(slots, trim="b") return prod / prod[0], np.int64(slots).flatten() def start_conditions(self, magnitude, time, T): N = len(time) if T is None: deltaT = time[1:] - time[:-1] sorted_deltaT = np.sort(deltaT) T = sorted_deltaT[int(N * 0.05) + 1] K = 100 SAC, slots = self.slotted_autocorrelation(magnitude, time, T, K) SAC2 = SAC[slots] return T, K, slots, SAC2 def fit(self, magnitude, time, T): T, K, slots, SAC2 = self.start_conditions(magnitude, time, T) k = next( (index for index, value in enumerate(SAC2) if value < np.exp(-1)), None, ) while k is None: K = K + K if K > (np.max(time) - np.min(time)) / T: break else: SAC, slots = self.slotted_autocorrelation( magnitude, time, T, K, second_round=True, K1=int(K / 2) ) SAC2 = SAC[slots] k = next( ( index for index, value in enumerate(SAC2) if value < np.exp(-1) ), None, ) val = np.nan if k is None else slots[k] * T return {"SlottedA_length": val}