#!/usr/bin/env python # Copyright 2014-2020 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Qiming Sun <osirpt.sun@gmail.com> # ''' Hartree-Fock ''' import sys import tempfile import time from functools import reduce import numpy import scipy.linalg import h5py from pyscf import gto from pyscf import lib from pyscf.lib import logger from pyscf.scf import diis from pyscf.scf import _vhf from pyscf.scf import chkfile from pyscf.data import nist from pyscf import __config__ WITH_META_LOWDIN = getattr(__config__, 'scf_analyze_with_meta_lowdin', True) PRE_ORTH_METHOD = getattr(__config__, 'scf_analyze_pre_orth_method', 'ANO') MO_BASE = getattr(__config__, 'MO_BASE', 1) TIGHT_GRAD_CONV_TOL = getattr(__config__, 'scf_hf_kernel_tight_grad_conv_tol', True) MUTE_CHKFILE = getattr(__config__, 'scf_hf_SCF_mute_chkfile', False) # For code compatibility in python-2 and python-3 if sys.version_info >= (3,): unicode = str def kernel(mf, conv_tol=1e-10, conv_tol_grad=None, dump_chk=True, dm0=None, callback=None, conv_check=True, **kwargs): '''kernel: the SCF driver. Args: mf : an instance of SCF class mf object holds all parameters to control SCF. One can modify its member functions to change the behavior of SCF. The member functions which are called in kernel are | mf.get_init_guess | mf.get_hcore | mf.get_ovlp | mf.get_veff | mf.get_fock | mf.get_grad | mf.eig | mf.get_occ | mf.make_rdm1 | mf.energy_tot | mf.dump_chk Kwargs: conv_tol : float converge threshold. conv_tol_grad : float gradients converge threshold. dump_chk : bool Whether to save SCF intermediate results in the checkpoint file dm0 : ndarray Initial guess density matrix. If not given (the default), the kernel takes the density matrix generated by ``mf.get_init_guess``. callback : function(envs_dict) => None callback function takes one dict as the argument which is generated by the builtin function :func:`locals`, so that the callback function can access all local variables in the current envrionment. Returns: A list : scf_conv, e_tot, mo_energy, mo_coeff, mo_occ scf_conv : bool True means SCF converged e_tot : float Hartree-Fock energy of last iteration mo_energy : 1D float array Orbital energies. Depending the eig function provided by mf object, the orbital energies may NOT be sorted. mo_coeff : 2D array Orbital coefficients. mo_occ : 1D array Orbital occupancies. The occupancies may NOT be sorted from large to small. Examples: >>> from pyscf import gto, scf >>> mol = gto.M(atom='H 0 0 0; H 0 0 1.1', basis='cc-pvdz') >>> conv, e, mo_e, mo, mo_occ = scf.hf.kernel(scf.hf.SCF(mol), dm0=numpy.eye(mol.nao_nr())) >>> print('conv = %s, E(HF) = %.12f' % (conv, e)) conv = True, E(HF) = -1.081170784378 ''' if 'init_dm' in kwargs: raise RuntimeError(''' You see this error message because of the API updates in pyscf v0.11. Keyword argument "init_dm" is replaced by "dm0"''') cput0 = (time.clock(), time.time()) if conv_tol_grad is None: conv_tol_grad = numpy.sqrt(conv_tol) logger.info(mf, 'Set gradient conv threshold to %g', conv_tol_grad) mol = mf.mol if dm0 is None: dm = mf.get_init_guess(mol, mf.init_guess) else: dm = dm0 h1e = mf.get_hcore(mol) vhf = mf.get_veff(mol, dm) e_tot = mf.energy_tot(dm, h1e, vhf) logger.info(mf, 'init E= %.15g', e_tot) scf_conv = False mo_energy = mo_coeff = mo_occ = None s1e = mf.get_ovlp(mol) cond = lib.cond(s1e) logger.debug(mf, 'cond(S) = %s', cond) if numpy.max(cond)*1e-17 > conv_tol: logger.warn(mf, 'Singularity detected in overlap matrix (condition number = %4.3g). ' 'SCF may be inaccurate and hard to converge.', numpy.max(cond)) # Skip SCF iterations. Compute only the total energy of the initial density if mf.max_cycle <= 0: fock = mf.get_fock(h1e, s1e, vhf, dm) # = h1e + vhf, no DIIS mo_energy, mo_coeff = mf.eig(fock, s1e) mo_occ = mf.get_occ(mo_energy, mo_coeff) return scf_conv, e_tot, mo_energy, mo_coeff, mo_occ if isinstance(mf.diis, lib.diis.DIIS): mf_diis = mf.diis elif mf.diis: assert issubclass(mf.DIIS, lib.diis.DIIS) mf_diis = mf.DIIS(mf, mf.diis_file) mf_diis.space = mf.diis_space mf_diis.rollback = mf.diis_space_rollback else: mf_diis = None if dump_chk and mf.chkfile: # Explicit overwrite the mol object in chkfile # Note in pbc.scf, mf.mol == mf.cell, cell is saved under key "mol" chkfile.save_mol(mol, mf.chkfile) # A preprocessing hook before the SCF iteration mf.pre_kernel(locals()) cput1 = logger.timer(mf, 'initialize scf', *cput0) for cycle in range(mf.max_cycle): dm_last = dm last_hf_e = e_tot fock = mf.get_fock(h1e, s1e, vhf, dm, cycle, mf_diis) mo_energy, mo_coeff = mf.eig(fock, s1e) mo_occ = mf.get_occ(mo_energy, mo_coeff) dm = mf.make_rdm1(mo_coeff, mo_occ) # attach mo_coeff and mo_occ to dm to improve DFT get_veff efficiency dm = lib.tag_array(dm, mo_coeff=mo_coeff, mo_occ=mo_occ) vhf = mf.get_veff(mol, dm, dm_last, vhf) e_tot = mf.energy_tot(dm, h1e, vhf) # Here Fock matrix is h1e + vhf, without DIIS. Calling get_fock # instead of the statement "fock = h1e + vhf" because Fock matrix may # be modified in some methods. fock = mf.get_fock(h1e, s1e, vhf, dm) # = h1e + vhf, no DIIS norm_gorb = numpy.linalg.norm(mf.get_grad(mo_coeff, mo_occ, fock)) if not TIGHT_GRAD_CONV_TOL: norm_gorb = norm_gorb / numpy.sqrt(norm_gorb.size) norm_ddm = numpy.linalg.norm(dm-dm_last) logger.info(mf, 'cycle= %d E= %.15g delta_E= %4.3g |g|= %4.3g |ddm|= %4.3g', cycle+1, e_tot, e_tot-last_hf_e, norm_gorb, norm_ddm) if callable(mf.check_convergence): scf_conv = mf.check_convergence(locals()) elif abs(e_tot-last_hf_e) < conv_tol and norm_gorb < conv_tol_grad: scf_conv = True if dump_chk: mf.dump_chk(locals()) if callable(callback): callback(locals()) cput1 = logger.timer(mf, 'cycle= %d'%(cycle+1), *cput1) if scf_conv: break if scf_conv and conv_check: # An extra diagonalization, to remove level shift #fock = mf.get_fock(h1e, s1e, vhf, dm) # = h1e + vhf mo_energy, mo_coeff = mf.eig(fock, s1e) mo_occ = mf.get_occ(mo_energy, mo_coeff) dm, dm_last = mf.make_rdm1(mo_coeff, mo_occ), dm dm = lib.tag_array(dm, mo_coeff=mo_coeff, mo_occ=mo_occ) vhf = mf.get_veff(mol, dm, dm_last, vhf) e_tot, last_hf_e = mf.energy_tot(dm, h1e, vhf), e_tot fock = mf.get_fock(h1e, s1e, vhf, dm) norm_gorb = numpy.linalg.norm(mf.get_grad(mo_coeff, mo_occ, fock)) if not TIGHT_GRAD_CONV_TOL: norm_gorb = norm_gorb / numpy.sqrt(norm_gorb.size) norm_ddm = numpy.linalg.norm(dm-dm_last) conv_tol = conv_tol * 10 conv_tol_grad = conv_tol_grad * 3 if callable(mf.check_convergence): scf_conv = mf.check_convergence(locals()) elif abs(e_tot-last_hf_e) < conv_tol or norm_gorb < conv_tol_grad: scf_conv = True logger.info(mf, 'Extra cycle E= %.15g delta_E= %4.3g |g|= %4.3g |ddm|= %4.3g', e_tot, e_tot-last_hf_e, norm_gorb, norm_ddm) if dump_chk: mf.dump_chk(locals()) logger.timer(mf, 'scf_cycle', *cput0) # A post-processing hook before return mf.post_kernel(locals()) return scf_conv, e_tot, mo_energy, mo_coeff, mo_occ def energy_elec(mf, dm=None, h1e=None, vhf=None): r'''Electronic part of Hartree-Fock energy, for given core hamiltonian and HF potential ... math:: E = \sum_{ij}h_{ij} \gamma_{ji} + \frac{1}{2}\sum_{ijkl} \gamma_{ji}\gamma_{lk} \langle ik||jl\rangle Note this function has side effects which cause mf.scf_summary updated. Args: mf : an instance of SCF class Kwargs: dm : 2D ndarray one-partical density matrix h1e : 2D ndarray Core hamiltonian vhf : 2D ndarray HF potential Returns: Hartree-Fock electronic energy and the Coulomb energy Examples: >>> from pyscf import gto, scf >>> mol = gto.M(atom='H 0 0 0; H 0 0 1.1') >>> mf = scf.RHF(mol) >>> mf.scf() >>> dm = mf.make_rdm1() >>> scf.hf.energy_elec(mf, dm) (-1.5176090667746334, 0.60917167853723675) >>> mf.energy_elec(dm) (-1.5176090667746334, 0.60917167853723675) ''' if dm is None: dm = mf.make_rdm1() if h1e is None: h1e = mf.get_hcore() if vhf is None: vhf = mf.get_veff(mf.mol, dm) e1 = numpy.einsum('ij,ji->', h1e, dm) e_coul = numpy.einsum('ij,ji->', vhf, dm) * .5 mf.scf_summary['e1'] = e1.real mf.scf_summary['e2'] = e_coul.real logger.debug(mf, 'E1 = %s E_coul = %s', e1, e_coul) return (e1+e_coul).real, e_coul def energy_tot(mf, dm=None, h1e=None, vhf=None): r'''Total Hartree-Fock energy, electronic part plus nuclear repulstion See :func:`scf.hf.energy_elec` for the electron part Note this function has side effects which cause mf.scf_summary updated. ''' nuc = mf.energy_nuc() e_tot = mf.energy_elec(dm, h1e, vhf)[0] + nuc mf.scf_summary['nuc'] = nuc.real return e_tot def get_hcore(mol): '''Core Hamiltonian Examples: >>> from pyscf import gto, scf >>> mol = gto.M(atom='H 0 0 0; H 0 0 1.1') >>> scf.hf.get_hcore(mol) array([[-0.93767904, -0.59316327], [-0.59316327, -0.93767904]]) ''' h = mol.intor_symmetric('int1e_kin') if mol._pseudo: # Although mol._pseudo for GTH PP is only available in Cell, GTH PP # may exist if mol is converted from cell object. from pyscf.gto import pp_int h += pp_int.get_gth_pp(mol) else: h+= mol.intor_symmetric('int1e_nuc') if len(mol._ecpbas) > 0: h += mol.intor_symmetric('ECPscalar') return h def get_ovlp(mol): '''Overlap matrix ''' return mol.intor_symmetric('int1e_ovlp') def init_guess_by_minao(mol): '''Generate initial guess density matrix based on ANO basis, then project the density matrix to the basis set defined by ``mol`` Returns: Density matrix, 2D ndarray Examples: >>> from pyscf import gto, scf >>> mol = gto.M(atom='H 0 0 0; H 0 0 1.1') >>> scf.hf.init_guess_by_minao(mol) array([[ 0.94758917, 0.09227308], [ 0.09227308, 0.94758917]]) ''' from pyscf.scf import atom_hf from pyscf.scf import addons def minao_basis(symb, nelec_ecp): occ = [] basis_ano = [] if gto.is_ghost_atom(symb): return occ, basis_ano stdsymb = gto.mole._std_symbol(symb) basis_add = gto.basis.load('ano', stdsymb) # coreshl defines the core shells to be removed in the initial guess coreshl = gto.ecp.core_configuration(nelec_ecp) #coreshl = (0,0,0,0) # it keeps all core electrons in the initial guess for l in range(4): ndocc, frac = atom_hf.frac_occ(stdsymb, l) assert ndocc >= coreshl[l] degen = l * 2 + 1 occ_l = [2,]*(ndocc-coreshl[l]) + [frac,] occ.append(numpy.repeat(occ_l, degen)) basis_ano.append([l] + [b[:1] + b[1+coreshl[l]:ndocc+2] for b in basis_add[l][1:]]) occ = numpy.hstack(occ) if nelec_ecp > 0: basis4ecp = [[] for i in range(4)] for bas in mol._basis[symb]: l = bas[0] if l < 4: basis4ecp[l].append(bas) occ4ecp = [] for l in range(4): nbas_l = sum((len(bas[1]) - 1) for bas in basis4ecp[l]) ndocc, frac = atom_hf.frac_occ(stdsymb, l) ndocc -= coreshl[l] assert ndocc <= nbas_l occ_l = numpy.zeros(nbas_l) occ_l[:ndocc] = 2 if frac > 0: occ_l[ndocc] = frac occ4ecp.append(numpy.repeat(occ_l, l * 2 + 1)) occ4ecp = numpy.hstack(occ4ecp) basis4ecp = lib.flatten(basis4ecp) # Compared to ANO valence basis, to check whether the ECP basis set has # reasonable AO-character contraction. The ANO valence AO should have # significant overlap to ECP basis if the ECP basis has AO-character. atm1 = gto.Mole() atm2 = gto.Mole() atom = [[symb, (0.,0.,0.)]] atm1._atm, atm1._bas, atm1._env = atm1.make_env(atom, {symb:basis4ecp}, []) atm2._atm, atm2._bas, atm2._env = atm2.make_env(atom, {symb:basis_ano}, []) atm1._built = True atm2._built = True s12 = gto.intor_cross('int1e_ovlp', atm1, atm2) if abs(numpy.linalg.det(s12[occ4ecp>0][:,occ>0])) > .1: occ, basis_ano = occ4ecp, basis4ecp else: logger.debug(mol, 'Density of valence part of ANO basis ' 'will be used as initial guess for %s', symb) return occ, basis_ano # Issue 548 if any(gto.charge(mol.atom_symbol(ia)) > 96 for ia in range(mol.natm)): logger.info(mol, 'MINAO initial guess is not available for super-heavy ' 'elements. "atom" initial guess is used.') return init_guess_by_atom(mol) nelec_ecp_dic = dict([(mol.atom_symbol(ia), mol.atom_nelec_core(ia)) for ia in range(mol.natm)]) basis = {} occdic = {} for symb, nelec_ecp in nelec_ecp_dic.items(): occ_add, basis_add = minao_basis(symb, nelec_ecp) occdic[symb] = occ_add basis[symb] = basis_add occ = [] new_atom = [] for ia in range(mol.natm): symb = mol.atom_symbol(ia) if not gto.is_ghost_atom(symb): occ.append(occdic[symb]) new_atom.append(mol._atom[ia]) occ = numpy.hstack(occ) pmol = gto.Mole() pmol._atm, pmol._bas, pmol._env = pmol.make_env(new_atom, basis, []) pmol._built = True dm = addons.project_dm_nr2nr(pmol, numpy.diag(occ), mol) # normalize eletron number # s = mol.intor_symmetric('int1e_ovlp') # dm *= mol.nelectron / (dm*s).sum() return dm def init_guess_by_1e(mol): '''Generate initial guess density matrix from core hamiltonian Returns: Density matrix, 2D ndarray ''' mf = RHF(mol) return mf.init_guess_by_1e(mol) def init_guess_by_atom(mol): '''Generate initial guess density matrix from superposition of atomic HF density matrix. The atomic HF is occupancy averaged RHF Returns: Density matrix, 2D ndarray ''' from pyscf.scf import atom_hf atm_scf = atom_hf.get_atm_nrhf(mol) aoslice = mol.aoslice_by_atom() atm_dms = [] for ia in range(mol.natm): symb = mol.atom_symbol(ia) if symb not in atm_scf: symb = mol.atom_pure_symbol(ia) if symb in atm_scf: e_hf, e, c, occ = atm_scf[symb] dm = numpy.dot(c*occ, c.conj().T) else: # symb's basis is not specified in the input nao_atm = aoslice[ia,3] - aoslice[ia,2] dm = numpy.zeros((nao_atm, nao_atm)) atm_dms.append(dm) dm = scipy.linalg.block_diag(*atm_dms) if mol.cart: cart2sph = mol.cart2sph_coeff(normalized='sp') dm = reduce(numpy.dot, (cart2sph, dm, cart2sph.T)) for k, v in atm_scf.items(): logger.debug1(mol, 'Atom %s, E = %.12g', k, v[0]) return dm def init_guess_by_huckel(mol): '''Generate initial guess density matrix from a Huckel calculation based on occupancy averaged atomic RHF calculations, doi:10.1021/acs.jctc.8b01089 Returns: Density matrix, 2D ndarray ''' mo_energy, mo_coeff = _init_guess_huckel_orbitals(mol) mo_occ = get_occ(SCF(mol), mo_energy, mo_coeff) return make_rdm1(mo_coeff, mo_occ) def _init_guess_huckel_orbitals(mol): '''Generate initial guess density matrix from a Huckel calculation based on occupancy averaged atomic RHF calculations, doi:10.1021/acs.jctc.8b01089 Returns: An 1D array for Huckel orbital energies and an 2D array for orbital coefficients ''' from pyscf.scf import atom_hf atm_scf = atom_hf.get_atm_nrhf(mol) # GWH parameter value Kgwh = 1.75 # Run atomic SCF calculations to get orbital energies, coefficients and occupations at_e = [] at_c = [] at_occ = [] for ia in range(mol.natm): symb = mol.atom_symbol(ia) if symb not in atm_scf: symb = mol.atom_pure_symbol(ia) e_hf, e, c, occ = atm_scf[symb] at_c.append(c) at_e.append(e) at_occ.append(occ) # Count number of occupied orbitals nocc = 0 for ia in range(mol.natm): for iorb in range(len(at_occ[ia])): if(at_occ[ia][iorb]>0.0): nocc=nocc+1 # Number of basis functions nbf = mol.nao_nr() # Collect AO coefficients and energies orb_E = numpy.zeros(nocc) orb_C = numpy.zeros((nbf,nocc)) # Atomic basis info aoslice = mol.aoslice_by_atom() iocc = 0 for ia in range(mol.natm): # First and last bf index abeg = aoslice[ia, 2] aend = aoslice[ia, 3] for iorb in range(len(at_occ[ia])): if(at_occ[ia][iorb]>0.0): orb_C[abeg:aend,iocc] = at_c[ia][:,iorb] orb_E[iocc] = at_e[ia][iorb] iocc=iocc+1 # Overlap matrix S = get_ovlp(mol) # Atomic orbital overlap orb_S = orb_C.transpose().dot(S).dot(orb_C) # Build Huckel matrix orb_H = numpy.zeros((nocc,nocc)) for io in range(nocc): # Diagonal is just the orbital energies orb_H[io,io] = orb_E[io] for jo in range(io): # Off-diagonal is given by GWH approximation orb_H[io,jo] = 0.5*Kgwh*orb_S[io,jo]*(orb_E[io]+orb_E[jo]) orb_H[jo,io] = orb_H[io,jo] # Energies and coefficients in the minimal orbital basis mo_E, atmo_C = eig(orb_H, orb_S) # and in the AO basis mo_C = orb_C.dot(atmo_C) return mo_E, mo_C def init_guess_by_chkfile(mol, chkfile_name, project=None): '''Read the HF results from checkpoint file, then project it to the basis defined by ``mol`` Returns: Density matrix, 2D ndarray ''' from pyscf.scf import uhf dm = uhf.init_guess_by_chkfile(mol, chkfile_name, project) return dm[0] + dm[1] def get_init_guess(mol, key='minao'): '''Generate density matrix for initial guess Kwargs: key : str One of 'minao', 'atom', 'huckel', 'hcore', '1e', 'chkfile'. ''' return RHF(mol).get_init_guess(mol, key) # eigenvalue of d is 1 def level_shift(s, d, f, factor): r'''Apply level shift :math:`\Delta` to virtual orbitals .. math:: :nowrap: \begin{align} FC &= SCE \\ F &= F + SC \Lambda C^\dagger S \\ \Lambda_{ij} &= \begin{cases} \delta_{ij}\Delta & i \in \text{virtual} \\ 0 & \text{otherwise} \end{cases} \end{align} Returns: New Fock matrix, 2D ndarray ''' dm_vir = s - reduce(numpy.dot, (s, d, s)) return f + dm_vir * factor def damping(s, d, f, factor): #dm_vir = s - reduce(numpy.dot, (s,d,s)) #sinv = numpy.linalg.inv(s) #f0 = reduce(numpy.dot, (dm_vir, sinv, f, d, s)) dm_vir = numpy.eye(s.shape[0]) - numpy.dot(s, d) f0 = reduce(numpy.dot, (dm_vir, f, d, s)) f0 = (f0+f0.conj().T) * (factor/(factor+1.)) return f - f0 # full density matrix for RHF def make_rdm1(mo_coeff, mo_occ, **kwargs): '''One-particle density matrix in AO representation Args: mo_coeff : 2D ndarray Orbital coefficients. Each column is one orbital. mo_occ : 1D ndarray Occupancy ''' mocc = mo_coeff[:,mo_occ>0] # DO NOT make tag_array for dm1 here because this DM array may be modified and # passed to functions like get_jk, get_vxc. These functions may take the tags # (mo_coeff, mo_occ) to compute the potential if tags were found in the DM # array and modifications to DM array may be ignored. return numpy.dot(mocc*mo_occ[mo_occ>0], mocc.conj().T) ################################################ # for general DM # hermi = 0 : arbitary # hermi = 1 : hermitian # hermi = 2 : anti-hermitian ################################################ def dot_eri_dm(eri, dm, hermi=0, with_j=True, with_k=True): '''Compute J, K matrices in terms of the given 2-electron integrals and density matrix: J ~ numpy.einsum('pqrs,qp->rs', eri, dm) K ~ numpy.einsum('pqrs,qr->ps', eri, dm) Args: eri : ndarray 8-fold or 4-fold ERIs or complex integral array with N^4 elements (N is the number of orbitals) dm : ndarray or list of ndarrays A density matrix or a list of density matrices Kwargs: hermi : int Whether J, K matrix is hermitian | 0 : no hermitian or symmetric | 1 : hermitian | 2 : anti-hermitian Returns: Depending on the given dm, the function returns one J and one K matrix, or a list of J matrices and a list of K matrices, corresponding to the input density matrices. Examples: >>> from pyscf import gto, scf >>> from pyscf.scf import _vhf >>> mol = gto.M(atom='H 0 0 0; H 0 0 1.1') >>> eri = _vhf.int2e_sph(mol._atm, mol._bas, mol._env) >>> dms = numpy.random.random((3,mol.nao_nr(),mol.nao_nr())) >>> j, k = scf.hf.dot_eri_dm(eri, dms, hermi=0) >>> print(j.shape) (3, 2, 2) ''' dm = numpy.asarray(dm) nao = dm.shape[-1] if eri.dtype == numpy.complex128 or eri.size == nao**4: eri = eri.reshape((nao,)*4) dms = dm.reshape(-1,nao,nao) vj = vk = None if with_j: vj = numpy.einsum('ijkl,xji->xkl', eri, dms) vj = vj.reshape(dm.shape) if with_k: vk = numpy.einsum('ijkl,xjk->xil', eri, dms) vk = vk.reshape(dm.shape) else: vj, vk = _vhf.incore(eri, dm.real, hermi, with_j, with_k) if dm.dtype == numpy.complex128: vs = _vhf.incore(eri, dm.imag, 0, with_j, with_k) if with_j: vj = vj + vs[0] * 1j if with_k: vk = vk + vs[1] * 1j return vj, vk def get_jk(mol, dm, hermi=1, vhfopt=None, with_j=True, with_k=True, omega=None): '''Compute J, K matrices for all input density matrices Args: mol : an instance of :class:`Mole` dm : ndarray or list of ndarrays A density matrix or a list of density matrices Kwargs: hermi : int Whether J, K matrix is hermitian | 0 : not hermitian and not symmetric | 1 : hermitian or symmetric | 2 : anti-hermitian vhfopt : A class which holds precomputed quantities to optimize the computation of J, K matrices with_j : boolean Whether to compute J matrices with_k : boolean Whether to compute K matrices omega : float Parameter of range-seperated Coulomb operator: erf( omega * r12 ) / r12. If specified, integration are evaluated based on the long-range part of the range-seperated Coulomb operator. Returns: Depending on the given dm, the function returns one J and one K matrix, or a list of J matrices and a list of K matrices, corresponding to the input density matrices. Examples: >>> from pyscf import gto, scf >>> from pyscf.scf import _vhf >>> mol = gto.M(atom='H 0 0 0; H 0 0 1.1') >>> dms = numpy.random.random((3,mol.nao_nr(),mol.nao_nr())) >>> j, k = scf.hf.get_jk(mol, dms, hermi=0) >>> print(j.shape) (3, 2, 2) ''' dm = numpy.asarray(dm, order='C') dm_shape = dm.shape dm_dtype = dm.dtype nao = dm_shape[-1] if dm_dtype == numpy.complex128: dm = numpy.vstack((dm.real, dm.imag)).reshape(-1,nao,nao) hermi = 0 if omega is None: vj, vk = _vhf.direct(dm, mol._atm, mol._bas, mol._env, vhfopt, hermi, mol.cart, with_j, with_k) else: # The vhfopt of standard Coulomb operator can be used here as an approximate # integral prescreening conditioner since long-range part Coulomb is always # smaller than standard Coulomb. It's safe to filter LR integrals with the # integral estimation from standard Coulomb. with mol.with_range_coulomb(omega): vj, vk = _vhf.direct(dm, mol._atm, mol._bas, mol._env, vhfopt, hermi, mol.cart, with_j, with_k) if dm_dtype == numpy.complex128: if with_j: vj = vj.reshape(2,-1) vj = vj[0] + vj[1] * 1j vj = vj.reshape(dm_shape) if with_k: vk = vk.reshape(2,-1) vk = vk[0] + vk[1] * 1j vk = vk.reshape(dm_shape) return vj, vk def get_veff(mol, dm, dm_last=None, vhf_last=None, hermi=1, vhfopt=None): '''Hartree-Fock potential matrix for the given density matrix Args: mol : an instance of :class:`Mole` dm : ndarray or list of ndarrays A density matrix or a list of density matrices Kwargs: dm_last : ndarray or a list of ndarrays or 0 The density matrix baseline. If not 0, this function computes the increment of HF potential w.r.t. the reference HF potential matrix. vhf_last : ndarray or a list of ndarrays or 0 The reference HF potential matrix. hermi : int Whether J, K matrix is hermitian | 0 : no hermitian or symmetric | 1 : hermitian | 2 : anti-hermitian vhfopt : A class which holds precomputed quantities to optimize the computation of J, K matrices Returns: matrix Vhf = 2*J - K. Vhf can be a list matrices, corresponding to the input density matrices. Examples: >>> import numpy >>> from pyscf import gto, scf >>> from pyscf.scf import _vhf >>> mol = gto.M(atom='H 0 0 0; H 0 0 1.1') >>> dm0 = numpy.random.random((mol.nao_nr(),mol.nao_nr())) >>> vhf0 = scf.hf.get_veff(mol, dm0, hermi=0) >>> dm1 = numpy.random.random((mol.nao_nr(),mol.nao_nr())) >>> vhf1 = scf.hf.get_veff(mol, dm1, hermi=0) >>> vhf2 = scf.hf.get_veff(mol, dm1, dm_last=dm0, vhf_last=vhf0, hermi=0) >>> numpy.allclose(vhf1, vhf2) True ''' if dm_last is None: vj, vk = get_jk(mol, numpy.asarray(dm), hermi, vhfopt) return vj - vk * .5 else: ddm = numpy.asarray(dm) - numpy.asarray(dm_last) vj, vk = get_jk(mol, ddm, hermi, vhfopt) return vj - vk * .5 + numpy.asarray(vhf_last) def get_fock(mf, h1e=None, s1e=None, vhf=None, dm=None, cycle=-1, diis=None, diis_start_cycle=None, level_shift_factor=None, damp_factor=None): '''F = h^{core} + V^{HF} Special treatment (damping, DIIS, or level shift) will be applied to the Fock matrix if diis and cycle is specified (The two parameters are passed to get_fock function during the SCF iteration) Kwargs: h1e : 2D ndarray Core hamiltonian s1e : 2D ndarray Overlap matrix, for DIIS vhf : 2D ndarray HF potential matrix dm : 2D ndarray Density matrix, for DIIS cycle : int Then present SCF iteration step, for DIIS diis : an object of :attr:`SCF.DIIS` class DIIS object to hold intermediate Fock and error vectors diis_start_cycle : int The step to start DIIS. Default is 0. level_shift_factor : float or int Level shift (in AU) for virtual space. Default is 0. ''' if h1e is None: h1e = mf.get_hcore() if vhf is None: vhf = mf.get_veff(mf.mol, dm) f = h1e + vhf if cycle < 0 and diis is None: # Not inside the SCF iteration return f if diis_start_cycle is None: diis_start_cycle = mf.diis_start_cycle if level_shift_factor is None: level_shift_factor = mf.level_shift if damp_factor is None: damp_factor = mf.damp if s1e is None: s1e = mf.get_ovlp() if dm is None: dm = mf.make_rdm1() if 0 <= cycle < diis_start_cycle-1 and abs(damp_factor) > 1e-4: f = damping(s1e, dm*.5, f, damp_factor) if diis is not None and cycle >= diis_start_cycle: f = diis.update(s1e, dm, f, mf, h1e, vhf) if abs(level_shift_factor) > 1e-4: f = level_shift(s1e, dm*.5, f, level_shift_factor) return f def get_occ(mf, mo_energy=None, mo_coeff=None): '''Label the occupancies for each orbital Kwargs: mo_energy : 1D ndarray Obital energies mo_coeff : 2D ndarray Obital coefficients Examples: >>> from pyscf import gto, scf >>> mol = gto.M(atom='H 0 0 0; F 0 0 1.1') >>> mf = scf.hf.SCF(mol) >>> energy = numpy.array([-10., -1., 1, -2., 0, -3]) >>> mf.get_occ(energy) array([2, 2, 0, 2, 2, 2]) ''' if mo_energy is None: mo_energy = mf.mo_energy e_idx = numpy.argsort(mo_energy) e_sort = mo_energy[e_idx] nmo = mo_energy.size mo_occ = numpy.zeros(nmo) nocc = mf.mol.nelectron // 2 mo_occ[e_idx[:nocc]] = 2 if mf.verbose >= logger.INFO and nocc < nmo: if e_sort[nocc-1]+1e-3 > e_sort[nocc]: logger.warn(mf, 'HOMO %.15g == LUMO %.15g', e_sort[nocc-1], e_sort[nocc]) else: logger.info(mf, ' HOMO = %.15g LUMO = %.15g', e_sort[nocc-1], e_sort[nocc]) if mf.verbose >= logger.DEBUG: numpy.set_printoptions(threshold=nmo) logger.debug(mf, ' mo_energy =\n%s', mo_energy) numpy.set_printoptions(threshold=1000) return mo_occ def get_grad(mo_coeff, mo_occ, fock_ao): '''RHF orbital gradients Args: mo_coeff : 2D ndarray Obital coefficients mo_occ : 1D ndarray Orbital occupancy fock_ao : 2D ndarray Fock matrix in AO representation Returns: Gradients in MO representation. It's a num_occ*num_vir vector. ''' occidx = mo_occ > 0 viridx = ~occidx g = reduce(numpy.dot, (mo_coeff[:,viridx].conj().T, fock_ao, mo_coeff[:,occidx])) * 2 return g.ravel() def analyze(mf, verbose=logger.DEBUG, with_meta_lowdin=WITH_META_LOWDIN, **kwargs): '''Analyze the given SCF object: print orbital energies, occupancies; print orbital coefficients; Mulliken population analysis; Diople moment. ''' from pyscf.lo import orth from pyscf.tools import dump_mat mo_energy = mf.mo_energy mo_occ = mf.mo_occ mo_coeff = mf.mo_coeff log = logger.new_logger(mf, verbose) if log.verbose >= logger.NOTE: mf.dump_scf_summary(log) log.note('**** MO energy ****') for i,c in enumerate(mo_occ): log.note('MO #%-3d energy= %-18.15g occ= %g', i+MO_BASE, mo_energy[i], c) ovlp_ao = mf.get_ovlp() if verbose >= logger.DEBUG: label = mf.mol.ao_labels() if with_meta_lowdin: log.debug(' ** MO coefficients (expansion on meta-Lowdin AOs) **') orth_coeff = orth.orth_ao(mf.mol, 'meta_lowdin', s=ovlp_ao) c = reduce(numpy.dot, (orth_coeff.conj().T, ovlp_ao, mo_coeff)) else: log.debug(' ** MO coefficients (expansion on AOs) **') c = mo_coeff dump_mat.dump_rec(mf.stdout, c, label, start=MO_BASE, **kwargs) dm = mf.make_rdm1(mo_coeff, mo_occ) if with_meta_lowdin: return (mf.mulliken_meta(mf.mol, dm, s=ovlp_ao, verbose=log), mf.dip_moment(mf.mol, dm, verbose=log)) else: return (mf.mulliken_pop(mf.mol, dm, s=ovlp_ao, verbose=log), mf.dip_moment(mf.mol, dm, verbose=log)) def dump_scf_summary(mf, verbose=logger.DEBUG): if not mf.scf_summary: return log = logger.new_logger(mf, verbose) summary = mf.scf_summary def write(fmt, key): if key in summary: log.info(fmt, summary[key]) log.info('**** SCF Summaries ****') log.info('Total Energy = %24.15f', mf.e_tot) write('Nuclear Repulsion Energy = %24.15f', 'nuc') write('One-electron Energy = %24.15f', 'e1') write('Two-electron Energy = %24.15f', 'e2') write('Two-electron Coulomb Energy = %24.15f', 'coul') write('DFT Exchange-Correlation Energy = %24.15f', 'exc') write('Empirical Dispersion Energy = %24.15f', 'dispersion') write('PCM Polarization Energy = %24.15f', 'epcm') write('EFP Energy = %24.15f', 'efp') if getattr(mf, 'entropy', None): log.info('(Electronic) Entropy %24.15f', mf.entropy) log.info('(Electronic) Zero Point Energy %24.15f', mf.e_zero) log.info('Free Energy = %24.15f', mf.e_free) def mulliken_pop(mol, dm, s=None, verbose=logger.DEBUG): r'''Mulliken population analysis .. math:: M_{ij} = D_{ij} S_{ji} Mulliken charges .. math:: \delta_i = \sum_j M_{ij} Returns: A list : pop, charges pop : nparray Mulliken population on each atomic orbitals charges : nparray Mulliken charges ''' if s is None: s = get_ovlp(mol) log = logger.new_logger(mol, verbose) if isinstance(dm, numpy.ndarray) and dm.ndim == 2: pop = numpy.einsum('ij,ji->i', dm, s).real else: # ROHF pop = numpy.einsum('ij,ji->i', dm[0]+dm[1], s).real log.info(' ** Mulliken pop **') for i, s in enumerate(mol.ao_labels()): log.info('pop of %s %10.5f', s, pop[i]) log.note(' ** Mulliken atomic charges **') chg = numpy.zeros(mol.natm) for i, s in enumerate(mol.ao_labels(fmt=None)): chg[s[0]] += pop[i] chg = mol.atom_charges() - chg for ia in range(mol.natm): symb = mol.atom_symbol(ia) log.note('charge of %d%s = %10.5f', ia, symb, chg[ia]) return pop, chg def mulliken_meta(mol, dm, verbose=logger.DEBUG, pre_orth_method=PRE_ORTH_METHOD, s=None): '''Mulliken population analysis, based on meta-Lowdin AOs. In the meta-lowdin, the AOs are grouped in three sets: core, valence and Rydberg, the orthogonalization are carreid out within each subsets. Args: mol : an instance of :class:`Mole` dm : ndarray or 2-item list of ndarray Density matrix. ROHF dm is a 2-item list of 2D array Kwargs: verbose : int or instance of :class:`lib.logger.Logger` pre_orth_method : str Pre-orthogonalization, which localized GTOs for each atom. To obtain the occupied and unoccupied atomic shells, there are three methods | 'ano' : Project GTOs to ANO basis | 'minao' : Project GTOs to MINAO basis | 'scf' : Fraction-averaged RHF Returns: A list : pop, charges pop : nparray Mulliken population on each atomic orbitals charges : nparray Mulliken charges ''' from pyscf.lo import orth if s is None: s = get_ovlp(mol) log = logger.new_logger(mol, verbose) c = orth.restore_ao_character(mol, pre_orth_method) orth_coeff = orth.orth_ao(mol, 'meta_lowdin', pre_orth_ao=c, s=s) c_inv = numpy.dot(orth_coeff.conj().T, s) if isinstance(dm, numpy.ndarray) and dm.ndim == 2: dm = reduce(numpy.dot, (c_inv, dm, c_inv.T.conj())) else: # ROHF dm = reduce(numpy.dot, (c_inv, dm[0]+dm[1], c_inv.T.conj())) log.info(' ** Mulliken pop on meta-lowdin orthogonal AOs **') return mulliken_pop(mol, dm, numpy.eye(orth_coeff.shape[0]), log) mulliken_pop_meta_lowdin_ao = mulliken_meta def eig(h, s): '''Solver for generalized eigenvalue problem .. math:: HC = SCE ''' e, c = scipy.linalg.eigh(h, s) idx = numpy.argmax(abs(c.real), axis=0) c[:,c[idx,numpy.arange(len(e))].real<0] *= -1 return e, c def canonicalize(mf, mo_coeff, mo_occ, fock=None): '''Canonicalization diagonalizes the Fock matrix within occupied, open, virtual subspaces separatedly (without change occupancy). ''' if fock is None: dm = mf.make_rdm1(mo_coeff, mo_occ) fock = mf.get_fock(dm=dm) coreidx = mo_occ == 2 viridx = mo_occ == 0 openidx = ~(coreidx | viridx) mo = numpy.empty_like(mo_coeff) mo_e = numpy.empty(mo_occ.size) for idx in (coreidx, openidx, viridx): if numpy.count_nonzero(idx) > 0: orb = mo_coeff[:,idx] f1 = reduce(numpy.dot, (orb.conj().T, fock, orb)) e, c = scipy.linalg.eigh(f1) mo[:,idx] = numpy.dot(orb, c) mo_e[idx] = e return mo_e, mo def dip_moment(mol, dm, unit='Debye', verbose=logger.NOTE, **kwargs): r''' Dipole moment calculation .. math:: \mu_x = -\sum_{\mu}\sum_{\nu} P_{\mu\nu}(\nu|x|\mu) + \sum_A Q_A X_A\\ \mu_y = -\sum_{\mu}\sum_{\nu} P_{\mu\nu}(\nu|y|\mu) + \sum_A Q_A Y_A\\ \mu_z = -\sum_{\mu}\sum_{\nu} P_{\mu\nu}(\nu|z|\mu) + \sum_A Q_A Z_A where :math:`\mu_x, \mu_y, \mu_z` are the x, y and z components of dipole moment Args: mol: an instance of :class:`Mole` dm : a 2D ndarrays density matrices Return: A list: the dipole moment on x, y and z component ''' log = logger.new_logger(mol, verbose) if 'unit_symbol' in kwargs: # pragma: no cover log.warn('Kwarg "unit_symbol" was deprecated. It was replaced by kwarg ' 'unit since PySCF-1.5.') unit = kwargs['unit_symbol'] if not (isinstance(dm, numpy.ndarray) and dm.ndim == 2): # UHF denisty matrices dm = dm[0] + dm[1] with mol.with_common_orig((0,0,0)): ao_dip = mol.intor_symmetric('int1e_r', comp=3) el_dip = numpy.einsum('xij,ji->x', ao_dip, dm).real charges = mol.atom_charges() coords = mol.atom_coords() nucl_dip = numpy.einsum('i,ix->x', charges, coords) mol_dip = nucl_dip - el_dip if unit.upper() == 'DEBYE': mol_dip *= nist.AU2DEBYE log.note('Dipole moment(X, Y, Z, Debye): %8.5f, %8.5f, %8.5f', *mol_dip) else: log.note('Dipole moment(X, Y, Z, A.U.): %8.5f, %8.5f, %8.5f', *mol_dip) return mol_dip def uniq_var_indices(mo_occ): ''' Indicies of the unique variables for the orbital-gradients (or orbital-rotation) matrix. ''' occidxa = mo_occ>0 occidxb = mo_occ==2 viridxa = ~occidxa viridxb = ~occidxb mask = (viridxa[:,None] & occidxa) | (viridxb[:,None] & occidxb) return mask def pack_uniq_var(x, mo_occ): ''' Extract the unique variables from the full orbital-gradients (or orbital-rotation) matrix ''' idx = uniq_var_indices(mo_occ) return x[idx] def unpack_uniq_var(dx, mo_occ): ''' Fill the full orbital-gradients (or orbital-rotation) matrix with the unique variables. ''' nmo = len(mo_occ) idx = uniq_var_indices(mo_occ) x1 = numpy.zeros((nmo,nmo), dtype=dx.dtype) x1[idx] = dx return x1 - x1.conj().T def as_scanner(mf): '''Generating a scanner/solver for HF PES. The returned solver is a function. This function requires one argument "mol" as input and returns total HF energy. The solver will automatically use the results of last calculation as the initial guess of the new calculation. All parameters assigned in the SCF object (DIIS, conv_tol, max_memory etc) are automatically applied in the solver. Note scanner has side effects. It may change many underlying objects (_scf, with_df, with_x2c, ...) during calculation. Examples: >>> from pyscf import gto, scf >>> hf_scanner = scf.RHF(gto.Mole().set(verbose=0)).as_scanner() >>> hf_scanner(gto.M(atom='H 0 0 0; F 0 0 1.1')) -98.552190448277955 >>> hf_scanner(gto.M(atom='H 0 0 0; F 0 0 1.5')) -98.414750424294368 ''' if isinstance(mf, lib.SinglePointScanner): return mf logger.info(mf, 'Create scanner for %s', mf.__class__) class SCF_Scanner(mf.__class__, lib.SinglePointScanner): def __init__(self, mf_obj): self.__dict__.update(mf_obj.__dict__) def __call__(self, mol_or_geom, **kwargs): if isinstance(mol_or_geom, gto.Mole): mol = mol_or_geom else: mol = self.mol.set_geom_(mol_or_geom, inplace=False) # Cleanup intermediates associated to the pervious mol object self.reset(mol) if 'dm0' in kwargs: dm0 = kwargs.pop('dm0') elif self.mo_coeff is None: dm0 = None elif self.chkfile and h5py.is_hdf5(self.chkfile): dm0 = self.from_chk(self.chkfile) else: dm0 = self.make_rdm1() # dm0 form last calculation cannot be used in the current # calculation if a completely different system is given. # Obviously, the systems are very different if the number of # basis functions are different. # TODO: A robust check should include more comparison on # various attributes between current `mol` and the `mol` in # last calculation. if dm0.shape[-1] != mol.nao: #TODO: #from pyscf.scf import addons #if numpy.any(last_mol.atom_charges() != mol.atom_charges()): # dm0 = None #elif non-relativistic: # addons.project_dm_nr2nr(last_mol, dm0, last_mol) #else: # addons.project_dm_r2r(last_mol, dm0, last_mol) dm0 = None self.mo_coeff = None # To avoid last mo_coeff being used by SOSCF e_tot = self.kernel(dm0=dm0, **kwargs) return e_tot return SCF_Scanner(mf) ############ class SCF(lib.StreamObject): '''SCF base class. non-relativistic RHF. Attributes: verbose : int Print level. Default value equals to :class:`Mole.verbose` max_memory : float or int Allowed memory in MB. Default equals to :class:`Mole.max_memory` chkfile : str checkpoint file to save MOs, orbital energies etc. Writing to chkfile can be disabled if this attribute is set to None or False. conv_tol : float converge threshold. Default is 1e-9 conv_tol_grad : float gradients converge threshold. Default is sqrt(conv_tol) max_cycle : int max number of iterations. If max_cycle <= 0, SCF iteration will be skiped and the kernel function will compute only the total energy based on the intial guess. Default value is 50. init_guess : str initial guess method. It can be one of 'minao', 'atom', 'huckel', 'hcore', '1e', 'chkfile'. Default is 'minao' DIIS : DIIS class The class to generate diis object. It can be one of diis.SCF_DIIS, diis.ADIIS, diis.EDIIS. diis : boolean or object of DIIS class defined in :mod:`scf.diis`. Default is the object associated to the attribute :attr:`self.DIIS`. Set it to None/False to turn off DIIS. Note if this attribute is inialized as a DIIS object, the SCF driver will use this object in the iteration. The DIIS informations (vector basis and error vector) will be held inside this object. When kernel function is called again, the old states (vector basis and error vector) will be reused. diis_space : int DIIS space size. By default, 8 Fock matrices and errors vector are stored. diis_start_cycle : int The step to start DIIS. Default is 1. diis_file: 'str' File to store DIIS vectors and error vectors. level_shift : float or int Level shift (in AU) for virtual space. Default is 0. direct_scf : bool Direct SCF is used by default. direct_scf_tol : float Direct SCF cutoff threshold. Default is 1e-13. callback : function(envs_dict) => None callback function takes one dict as the argument which is generated by the builtin function :func:`locals`, so that the callback function can access all local variables in the current envrionment. conv_check : bool An extra cycle to check convergence after SCF iterations. check_convergence : function(envs) => bool A hook for overloading convergence criteria in SCF iterations. Saved results: converged : bool SCF converged or not e_tot : float Total HF energy (electronic energy plus nuclear repulsion) mo_energy : Orbital energies mo_occ Orbital occupancy mo_coeff Orbital coefficients Examples: >>> mol = gto.M(atom='H 0 0 0; H 0 0 1.1', basis='cc-pvdz') >>> mf = scf.hf.SCF(mol) >>> mf.verbose = 0 >>> mf.level_shift = .4 >>> mf.scf() -1.0811707843775884 ''' conv_tol = getattr(__config__, 'scf_hf_SCF_conv_tol', 1e-9) conv_tol_grad = getattr(__config__, 'scf_hf_SCF_conv_tol_grad', None) max_cycle = getattr(__config__, 'scf_hf_SCF_max_cycle', 50) init_guess = getattr(__config__, 'scf_hf_SCF_init_guess', 'minao') # To avoid diis pollution form previous run, self.diis should not be # initialized as DIIS instance here DIIS = diis.SCF_DIIS diis = getattr(__config__, 'scf_hf_SCF_diis', True) diis_space = getattr(__config__, 'scf_hf_SCF_diis_space', 8) # need > 0 if initial DM is numpy.zeros array diis_start_cycle = getattr(__config__, 'scf_hf_SCF_diis_start_cycle', 1) diis_file = None # Give diis_space_rollback=True a trial if all other methods do not converge diis_space_rollback = False damp = getattr(__config__, 'scf_hf_SCF_damp', 0) level_shift = getattr(__config__, 'scf_hf_SCF_level_shift', 0) direct_scf = getattr(__config__, 'scf_hf_SCF_direct_scf', True) direct_scf_tol = getattr(__config__, 'scf_hf_SCF_direct_scf_tol', 1e-13) conv_check = getattr(__config__, 'scf_hf_SCF_conv_check', True) def __init__(self, mol): if not mol._built: sys.stderr.write('Warning: %s must be initialized before calling SCF.\n' 'Initialize %s in %s\n' % (mol, mol, self)) mol.build() self.mol = mol self.verbose = mol.verbose self.max_memory = mol.max_memory self.stdout = mol.stdout # If chkfile is muted, SCF intermediates will not be dumped anywhere. if MUTE_CHKFILE: self.chkfile = None else: # the chkfile will be removed automatically, to save the chkfile, assign a # filename to self.chkfile self._chkfile = tempfile.NamedTemporaryFile(dir=lib.param.TMPDIR) self.chkfile = self._chkfile.name ################################################## # don't modify the following attributes, they are not input options self.mo_energy = None self.mo_coeff = None self.mo_occ = None self.e_tot = 0 self.converged = False self.callback = None self.scf_summary = {} self.opt = None self._eri = None # Note: self._eri requires large amount of memory keys = set(('conv_tol', 'conv_tol_grad', 'max_cycle', 'init_guess', 'DIIS', 'diis', 'diis_space', 'diis_start_cycle', 'diis_file', 'diis_space_rollback', 'damp', 'level_shift', 'direct_scf', 'direct_scf_tol', 'conv_check')) self._keys = set(self.__dict__.keys()).union(keys) def build(self, mol=None): if mol is None: mol = self.mol if self.verbose >= logger.WARN: self.check_sanity() # lazily initialize direct SCF self.opt = None return self def dump_flags(self, verbose=None): log = logger.new_logger(self, verbose) if log.verbose < logger.INFO: return self log.info('\n') log.info('******** %s ********', self.__class__) method = [cls.__name__ for cls in self.__class__.__mro__ if issubclass(cls, SCF) and cls != SCF] log.info('method = %s', '-'.join(method)) log.info('initial guess = %s', self.init_guess) log.info('damping factor = %g', self.damp) log.info('level_shift factor = %s', self.level_shift) if isinstance(self.diis, lib.diis.DIIS): log.info('DIIS = %s', self.diis) log.info('diis_start_cycle = %d', self.diis_start_cycle) log.info('diis_space = %d', self.diis.space) elif self.diis: log.info('DIIS = %s', self.DIIS) log.info('diis_start_cycle = %d', self.diis_start_cycle) log.info('diis_space = %d', self.diis_space) log.info('SCF conv_tol = %g', self.conv_tol) log.info('SCF conv_tol_grad = %s', self.conv_tol_grad) log.info('SCF max_cycles = %d', self.max_cycle) log.info('direct_scf = %s', self.direct_scf) if self.direct_scf: log.info('direct_scf_tol = %g', self.direct_scf_tol) if self.chkfile: log.info('chkfile to save SCF result = %s', self.chkfile) log.info('max_memory %d MB (current use %d MB)', self.max_memory, lib.current_memory()[0]) return self def _eigh(self, h, s): return eig(h, s) @lib.with_doc(eig.__doc__) def eig(self, h, s): # An intermediate call to self._eigh so that the modification to eig function # can be applied on different level. Different SCF modules like RHF/UHF # redifine only the eig solver and leave the other modifications (like removing # linear dependence, sorting eigenvlaue) to low level ._eigh return self._eigh(h, s) def get_hcore(self, mol=None): if mol is None: mol = self.mol return get_hcore(mol) def get_ovlp(self, mol=None): if mol is None: mol = self.mol return get_ovlp(mol) get_fock = get_fock get_occ = get_occ @lib.with_doc(get_grad.__doc__) def get_grad(self, mo_coeff, mo_occ, fock=None): if fock is None: dm1 = self.make_rdm1(mo_coeff, mo_occ) fock = self.get_hcore(self.mol) + self.get_veff(self.mol, dm1) return get_grad(mo_coeff, mo_occ, fock) def dump_chk(self, envs): if self.chkfile: chkfile.dump_scf(self.mol, self.chkfile, envs['e_tot'], envs['mo_energy'], envs['mo_coeff'], envs['mo_occ'], overwrite_mol=False) return self @lib.with_doc(init_guess_by_minao.__doc__) def init_guess_by_minao(self, mol=None): if mol is None: mol = self.mol return init_guess_by_minao(mol) @lib.with_doc(init_guess_by_atom.__doc__) def init_guess_by_atom(self, mol=None): if mol is None: mol = self.mol logger.info(self, 'Initial guess from superposition of atomic densities.') return init_guess_by_atom(mol) @lib.with_doc(init_guess_by_huckel.__doc__) def init_guess_by_huckel(self, mol=None): if mol is None: mol = self.mol logger.info(self, 'Initial guess from on-the-fly Huckel, doi:10.1021/acs.jctc.8b01089.') mo_energy, mo_coeff = _init_guess_huckel_orbitals(mol) mo_occ = self.get_occ(mo_energy, mo_coeff) return self.make_rdm1(mo_coeff, mo_occ) @lib.with_doc(init_guess_by_1e.__doc__) def init_guess_by_1e(self, mol=None): if mol is None: mol = self.mol logger.info(self, 'Initial guess from hcore.') h1e = self.get_hcore(mol) s1e = self.get_ovlp(mol) mo_energy, mo_coeff = self.eig(h1e, s1e) mo_occ = self.get_occ(mo_energy, mo_coeff) return self.make_rdm1(mo_coeff, mo_occ) @lib.with_doc(init_guess_by_chkfile.__doc__) def init_guess_by_chkfile(self, chkfile=None, project=None): if isinstance(chkfile, gto.Mole): raise TypeError(''' You see this error message because of the API updates. The first argument needs to be the name of a chkfile.''') if chkfile is None: chkfile = self.chkfile return init_guess_by_chkfile(self.mol, chkfile, project=project) def from_chk(self, chkfile=None, project=None): return self.init_guess_by_chkfile(chkfile, project) from_chk.__doc__ = init_guess_by_chkfile.__doc__ def get_init_guess(self, mol=None, key='minao'): key = key.lower() if mol is None: mol = self.mol if key == '1e' or key == 'hcore': dm = self.init_guess_by_1e(mol) elif key == 'huckel': dm = self.init_guess_by_huckel(mol) elif getattr(mol, 'natm', 0) == 0: logger.info(self, 'No atom found in mol. Use 1e initial guess') dm = self.init_guess_by_1e(mol) elif key == 'atom': dm = self.init_guess_by_atom(mol) elif key == 'vsap' and hasattr(self, 'init_guess_by_vsap'): # Only available for DFT objects dm = self.init_guess_by_vsap(mol) elif key[:3] == 'chk': try: dm = self.init_guess_by_chkfile() except (IOError, KeyError): logger.warn(self, 'Fail in reading %s. Use MINAO initial guess', self.chkfile) dm = self.init_guess_by_minao(mol) else: dm = self.init_guess_by_minao(mol) if self.verbose >= logger.DEBUG1: s = self.get_ovlp() if isinstance(dm, numpy.ndarray) and dm.ndim == 2: nelec = numpy.einsum('ij,ji', dm, s).real else: # UHF nelec =(numpy.einsum('ij,ji', dm[0], s).real, numpy.einsum('ij,ji', dm[1], s).real) logger.debug1(self, 'Nelec from initial guess = %s', nelec) return dm # full density matrix for RHF @lib.with_doc(make_rdm1.__doc__) def make_rdm1(self, mo_coeff=None, mo_occ=None, **kwargs): if mo_occ is None: mo_occ = self.mo_occ if mo_coeff is None: mo_coeff = self.mo_coeff return make_rdm1(mo_coeff, mo_occ, **kwargs) energy_elec = energy_elec energy_tot = energy_tot def energy_nuc(self): return self.mol.energy_nuc() # A hook for overloading convergence criteria in SCF iterations. Assigning # a function # f(envs) => bool # to check_convergence can overwrite the default convergence criteria check_convergence = None def scf(self, dm0=None, **kwargs): '''SCF main driver Kwargs: dm0 : ndarray If given, it will be used as the initial guess density matrix Examples: >>> import numpy >>> from pyscf import gto, scf >>> mol = gto.M(atom='H 0 0 0; F 0 0 1.1') >>> mf = scf.hf.SCF(mol) >>> dm_guess = numpy.eye(mol.nao_nr()) >>> mf.kernel(dm_guess) converged SCF energy = -98.5521904482821 -98.552190448282104 ''' cput0 = (time.clock(), time.time()) self.dump_flags() self.build(self.mol) if self.max_cycle > 0 or self.mo_coeff is None: self.converged, self.e_tot, \ self.mo_energy, self.mo_coeff, self.mo_occ = \ kernel(self, self.conv_tol, self.conv_tol_grad, dm0=dm0, callback=self.callback, conv_check=self.conv_check, **kwargs) else: # Avoid to update SCF orbitals in the non-SCF initialization # (issue #495). But run regular SCF for initial guess if SCF was # not initialized. self.e_tot = kernel(self, self.conv_tol, self.conv_tol_grad, dm0=dm0, callback=self.callback, conv_check=self.conv_check, **kwargs)[1] logger.timer(self, 'SCF', *cput0) self._finalize() return self.e_tot kernel = lib.alias(scf, alias_name='kernel') def _finalize(self): '''Hook for dumping results and clearing up the object.''' if self.converged: logger.note(self, 'converged SCF energy = %.15g', self.e_tot) else: logger.note(self, 'SCF not converged.') logger.note(self, 'SCF energy = %.15g', self.e_tot) return self def init_direct_scf(self, mol=None): if mol is None: mol = self.mol opt = _vhf.VHFOpt(mol, 'int2e', 'CVHFnrs8_prescreen', 'CVHFsetnr_direct_scf', 'CVHFsetnr_direct_scf_dm') opt.direct_scf_tol = self.direct_scf_tol return opt @lib.with_doc(get_jk.__doc__) def get_jk(self, mol=None, dm=None, hermi=1, with_j=True, with_k=True, omega=None): if mol is None: mol = self.mol if dm is None: dm = self.make_rdm1() cpu0 = (time.clock(), time.time()) if self.direct_scf and self.opt is None: self.opt = self.init_direct_scf(mol) if with_j and with_k: vj, vk = get_jk(mol, dm, hermi, self.opt, with_j, with_k, omega) else: if with_j: prescreen = 'CVHFnrs8_vj_prescreen' else: prescreen = 'CVHFnrs8_vk_prescreen' with lib.temporary_env(self.opt, prescreen=prescreen): vj, vk = get_jk(mol, dm, hermi, self.opt, with_j, with_k, omega) logger.timer(self, 'vj and vk', *cpu0) return vj, vk def get_j(self, mol=None, dm=None, hermi=1, omega=None): '''Compute J matrices for all input density matrices ''' return self.get_jk(mol, dm, hermi, with_k=False, omega=omega)[0] def get_k(self, mol=None, dm=None, hermi=1, omega=None): '''Compute K matrices for all input density matrices ''' return self.get_jk(mol, dm, hermi, with_j=False, omega=omega)[1] @lib.with_doc(get_veff.__doc__) def get_veff(self, mol=None, dm=None, dm_last=0, vhf_last=0, hermi=1): # Be carefule with the effects of :attr:`SCF.direct_scf` on this function if mol is None: mol = self.mol if dm is None: dm = self.make_rdm1() if self.direct_scf: ddm = numpy.asarray(dm) - dm_last vj, vk = self.get_jk(mol, ddm, hermi=hermi) return vhf_last + vj - vk * .5 else: vj, vk = self.get_jk(mol, dm, hermi=hermi) return vj - vk * .5 @lib.with_doc(analyze.__doc__) def analyze(self, verbose=None, with_meta_lowdin=WITH_META_LOWDIN, **kwargs): if verbose is None: verbose = self.verbose return analyze(self, verbose, with_meta_lowdin, **kwargs) dump_scf_summary = dump_scf_summary @lib.with_doc(mulliken_pop.__doc__) def mulliken_pop(self, mol=None, dm=None, s=None, verbose=logger.DEBUG): if mol is None: mol = self.mol if dm is None: dm = self.make_rdm1() if s is None: s = self.get_ovlp(mol) return mulliken_pop(mol, dm, s=s, verbose=verbose) @lib.with_doc(mulliken_meta.__doc__) def mulliken_meta(self, mol=None, dm=None, verbose=logger.DEBUG, pre_orth_method=PRE_ORTH_METHOD, s=None): if mol is None: mol = self.mol if dm is None: dm = self.make_rdm1() if s is None: s = self.get_ovlp(mol) return mulliken_meta(mol, dm, s=s, verbose=verbose, pre_orth_method=pre_orth_method) def pop(self, *args, **kwargs): return self.mulliken_meta(*args, **kwargs) pop.__doc__ = mulliken_meta.__doc__ mulliken_pop_meta_lowdin_ao = pop canonicalize = canonicalize @lib.with_doc(dip_moment.__doc__) def dip_moment(self, mol=None, dm=None, unit='Debye', verbose=logger.NOTE, **kwargs): if mol is None: mol = self.mol if dm is None: dm =self.make_rdm1() return dip_moment(mol, dm, unit, verbose=verbose, **kwargs) def _is_mem_enough(self): nbf = self.mol.nao_nr() return nbf**4/1e6+lib.current_memory()[0] < self.max_memory*.95 def density_fit(self, auxbasis=None, with_df=None, only_dfj=False): import pyscf.df.df_jk return pyscf.df.df_jk.density_fit(self, auxbasis, with_df, only_dfj) def sfx2c1e(self): import pyscf.x2c.sfx2c1e return pyscf.x2c.sfx2c1e.sfx2c1e(self) x2c1e = sfx2c1e x2c = x2c1e def newton(self): import pyscf.soscf.newton_ah return pyscf.soscf.newton_ah.newton(self) def nuc_grad_method(self): # pragma: no cover '''Hook to create object for analytical nuclear gradients.''' pass def update_(self, chkfile=None): '''Read attributes from the chkfile then replace the attributes of current object. It's an alias of function update_from_chk_. ''' from pyscf.scf import chkfile as chkmod if chkfile is None: chkfile = self.chkfile self.__dict__.update(chkmod.load(chkfile, 'scf')) return self update_from_chk = update_from_chk_ = update = update_ as_scanner = as_scanner def reset(self, mol=None): '''Reset mol and relevant attributes associated to the old mol object''' if mol is not None: self.mol = mol self.opt = None self._eri = None return self @property def hf_energy(self): # pragma: no cover sys.stderr.write('WARN: Attribute .hf_energy will be removed in PySCF v1.1. ' 'It is replaced by attribute .e_tot\n') return self.e_tot @hf_energy.setter def hf_energy(self, x): # pragma: no cover sys.stderr.write('WARN: Attribute .hf_energy will be removed in PySCF v1.1. ' 'It is replaced by attribute .e_tot\n') self.hf_energy = x @property def level_shift_factor(self): # pragma: no cover sys.stderr.write('WARN: Attribute .level_shift_factor will be removed in PySCF v1.1. ' 'It is replaced by attribute .level_shift\n') return self.level_shift @level_shift_factor.setter def level_shift_factor(self, x): # pragma: no cover sys.stderr.write('WARN: Attribute .level_shift_factor will be removed in PySCF v1.1. ' 'It is replaced by attribute .level_shift\n') self.level_shift = x @property def damp_factor(self): # pragma: no cover sys.stderr.write('WARN: Attribute .damp_factor will be removed in PySCF v1.1. ' 'It is replaced by attribute .damp\n') return self.damp @damp_factor.setter def damp_factor(self, x): # pragma: no cover sys.stderr.write('WARN: Attribute .damp_factor will be removed in PySCF v1.1. ' 'It is replaced by attribute .damp\n') self.damp = x def apply(self, fn, *args, **kwargs): if callable(fn): return lib.StreamObject.apply(self, fn, *args, **kwargs) elif isinstance(fn, (str, unicode)): from pyscf import mp, cc, ci, mcscf, tdscf for mod in (mp, cc, ci, mcscf, tdscf): method = getattr(mod, fn.upper(), None) if method is not None and callable(method): if self.mo_coeff is None: logger.warn(self, 'SCF object must be initialized ' 'before calling post-SCF methods.\n' 'Initialize %s for %s', self, mod) self.kernel() return method(self, *args, **kwargs) raise ValueError('Unknown method %s' % fn) else: raise TypeError('First argument of .apply method must be a ' 'function/class or a name (string) of a method.') def to_rhf(self): '''Convert the input mean-field object to a RHF/ROHF object. Note this conversion only changes the class of the mean-field object. The total energy and wave-function are the same as them in the input mean-field object. ''' from pyscf.scf import addons mf = addons.convert_to_rhf(self) if not isinstance(self, RHF): mf.converged = False return mf def to_uhf(self): '''Convert the input mean-field object to a UHF object. Note this conversion only changes the class of the mean-field object. The total energy and wave-function are the same as them in the input mean-field object. ''' from pyscf.scf import addons return addons.convert_to_uhf(self) def to_ghf(self): '''Convert the input mean-field object to a GHF object. Note this conversion only changes the class of the mean-field object. The total energy and wave-function are the same as them in the input mean-field object. ''' from pyscf.scf import addons return addons.convert_to_ghf(self) def to_rks(self, xc='HF'): '''Convert the input mean-field object to a RKS/ROKS object. Note this conversion only changes the class of the mean-field object. The total energy and wave-function are the same as them in the input mean-field object. ''' from pyscf import dft mf = dft.RKS(self.mol, xc=xc) mf.__dict__.update(self.to_rhf().__dict__) mf.converged = False return mf def to_uks(self, xc='HF'): '''Convert the input mean-field object to a UKS object. Note this conversion only changes the class of the mean-field object. The total energy and wave-function are the same as them in the input mean-field object. ''' from pyscf import dft mf = dft.UKS(self.mol, xc=xc) mf.__dict__.update(self.to_uhf().__dict__) mf.converged = False return mf def to_gks(self, xc='HF'): '''Convert the input mean-field object to a GKS object. Note this conversion only changes the class of the mean-field object. The total energy and wave-function are the same as them in the input mean-field object. ''' from pyscf import dft mf = dft.GKS(self.mol, xc=xc) mf.__dict__.update(self.to_ghf().__dict__) mf.converged = False return mf ############ class RHF(SCF): __doc__ = SCF.__doc__ def check_sanity(self): mol = self.mol if mol.nelectron != 1 and mol.spin != 0: logger.warn(self, 'Invalid number of electrons %d for RHF method.', mol.nelectron) return SCF.check_sanity(self) @lib.with_doc(get_jk.__doc__) def get_jk(self, mol=None, dm=None, hermi=1, with_j=True, with_k=True, omega=None): # Note the incore version, which initializes an _eri array in memory. if mol is None: mol = self.mol if dm is None: dm = self.make_rdm1() if (not omega and (self._eri is not None or mol.incore_anyway or self._is_mem_enough())): if self._eri is None: self._eri = mol.intor('int2e', aosym='s8') vj, vk = dot_eri_dm(self._eri, dm, hermi, with_j, with_k) else: vj, vk = SCF.get_jk(self, mol, dm, hermi, with_j, with_k, omega) return vj, vk @lib.with_doc(get_veff.__doc__) def get_veff(self, mol=None, dm=None, dm_last=0, vhf_last=0, hermi=1): if mol is None: mol = self.mol if dm is None: dm = self.make_rdm1() if self._eri is not None or not self.direct_scf: vj, vk = self.get_jk(mol, dm, hermi) vhf = vj - vk * .5 else: ddm = numpy.asarray(dm) - numpy.asarray(dm_last) vj, vk = self.get_jk(mol, ddm, hermi) vhf = vj - vk * .5 vhf += numpy.asarray(vhf_last) return vhf def convert_from_(self, mf): '''Convert the input mean-field object to RHF/ROHF''' from pyscf.scf import addons return addons.convert_to_rhf(mf, out=self) def spin_square(self, mo_coeff=None, s=None): # pragma: no cover '''Spin square and multiplicity of RHF determinant''' return 0, 1 def stability(self, internal=getattr(__config__, 'scf_stability_internal', True), external=getattr(__config__, 'scf_stability_external', False), verbose=None): ''' RHF/RKS stability analysis. See also pyscf.scf.stability.rhf_stability function. Kwargs: internal : bool Internal stability, within the RHF optimization space. external : bool External stability. Including the RHF -> UHF and real -> complex stability analysis. Returns: New orbitals that are more close to the stable condition. The return value includes two set of orbitals. The first corresponds to the internal stability and the second corresponds to the external stability. ''' from pyscf.scf.stability import rhf_stability return rhf_stability(self, internal, external, verbose) def nuc_grad_method(self): from pyscf.grad import rhf return rhf.Gradients(self) del(WITH_META_LOWDIN, PRE_ORTH_METHOD) if __name__ == '__main__': from pyscf import scf mol = gto.Mole() mol.verbose = 5 mol.output = None mol.atom = [['He', (0, 0, 0)], ] mol.basis = 'ccpvdz' mol.build(0, 0) ############## # SCF result method = scf.RHF(mol).x2c().density_fit().newton() method.init_guess = '1e' energy = method.scf() print(energy)