from functools import partial

import mmcv
import numpy as np
import torch
from six.moves import map, zip

def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True):
    """Convert tensor to images.

        tensor (torch.Tensor): Tensor that contains multiple images
        mean (tuple[float], optional): Mean of images. Defaults to (0, 0, 0).
        std (tuple[float], optional): Standard deviation of images.
            Defaults to (1, 1, 1).
        to_rgb (bool, optional): Whether convert the images to RGB format.
            Defaults to True.

        list[np.ndarray]: A list that contains multiple images.
    num_imgs = tensor.size(0)
    mean = np.array(mean, dtype=np.float32)
    std = np.array(std, dtype=np.float32)
    imgs = []
    for img_id in range(num_imgs):
        img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0)
        img = mmcv.imdenormalize(
            img, mean, std, to_bgr=to_rgb).astype(np.uint8)
    return imgs

def multi_apply(func, *args, **kwargs):
    """Apply function to a list of arguments.

        This function applies the ``func`` to multiple inputs and
            map the multiple outputs of the ``func`` into different
            list. Each list contains the same type of outputs corresponding
            to different inputs.

        func (Function): A function that will be applied to a list of

        tuple(list): A tuple containing multiple list, each list contains
            a kind of returned results by the function
    pfunc = partial(func, **kwargs) if kwargs else func
    map_results = map(pfunc, *args)
    return tuple(map(list, zip(*map_results)))

def unmap(data, count, inds, fill=0):
    """Unmap a subset of item (data) back to the original set of items (of size
    if data.dim() == 1:
        ret = data.new_full((count, ), fill)
        ret[inds.type(torch.bool)] = data
        new_size = (count, ) + data.size()[1:]
        ret = data.new_full(new_size, fill)
        ret[inds.type(torch.bool), :] = data
    return ret