import warnings
from collections import OrderedDict

import torch.distributed as dist
from mmcv.runner import OptimizerHook
from torch._utils import (_flatten_dense_tensors, _take_tensors,
                          _unflatten_dense_tensors)


def _allreduce_coalesced(tensors, world_size, bucket_size_mb=-1):
    if bucket_size_mb > 0:
        bucket_size_bytes = bucket_size_mb * 1024 * 1024
        buckets = _take_tensors(tensors, bucket_size_bytes)
    else:
        buckets = OrderedDict()
        for tensor in tensors:
            tp = tensor.type()
            if tp not in buckets:
                buckets[tp] = []
            buckets[tp].append(tensor)
        buckets = buckets.values()

    for bucket in buckets:
        flat_tensors = _flatten_dense_tensors(bucket)
        dist.all_reduce(flat_tensors)
        flat_tensors.div_(world_size)
        for tensor, synced in zip(
                bucket, _unflatten_dense_tensors(flat_tensors, bucket)):
            tensor.copy_(synced)


def allreduce_grads(params, coalesce=True, bucket_size_mb=-1):
    """Allreduce gradients.

    Args:
        params (list[torch.Parameters]): List of parameters of a model
        coalesce (bool, optional): Whether allreduce parameters as a whole.
            Defaults to True.
        bucket_size_mb (int, optional): Size of bucket, the unit is MB.
            Defaults to -1.
    """
    grads = [
        param.grad.data for param in params
        if param.requires_grad and param.grad is not None
    ]
    world_size = dist.get_world_size()
    if coalesce:
        _allreduce_coalesced(grads, world_size, bucket_size_mb)
    else:
        for tensor in grads:
            dist.all_reduce(tensor.div_(world_size))


class DistOptimizerHook(OptimizerHook):
    """Deprecated optimizer hook for distributed training."""

    def __init__(self, *args, **kwargs):
        warnings.warn('"DistOptimizerHook" is deprecated, please switch to'
                      '"mmcv.runner.OptimizerHook".')
        super().__init__(*args, **kwargs)