from __future__ import print_function import numpy as np import keras from keras.preprocessing import sequence import keras.preprocessing.text from keras.models import Sequential from keras.layers import Dense from keras.layers import Embedding from keras.layers import GlobalAveragePooling1D from keras.datasets import imdb import tempfile def make_keras_picklable(): def __getstate__(self): model_str = "" with tempfile.NamedTemporaryFile(suffix='.hdf5', delete=True) as fd: keras.models.save_model(self, fd.name, overwrite=True) model_str = fd.read() d = { 'model_str': model_str } return d def __setstate__(self, state): with tempfile.NamedTemporaryFile(suffix='.hdf5', delete=True) as fd: fd.write(state['model_str']) fd.flush() model = keras.models.load_model(fd.name) self.__dict__ = model.__dict__ cls = keras.models.Model cls.__getstate__ = __getstate__ cls.__setstate__ = __setstate__ make_keras_picklable() def create_ngram_set(input_list, ngram_value=2): """ Extract a set of n-grams from a list of integers. >>> create_ngram_set([1, 4, 9, 4, 1, 4], ngram_value=2) {(4, 9), (4, 1), (1, 4), (9, 4)} >>> create_ngram_set([1, 4, 9, 4, 1, 4], ngram_value=3) [(1, 4, 9), (4, 9, 4), (9, 4, 1), (4, 1, 4)] """ return set(zip(*[input_list[i:] for i in range(ngram_value)])) def add_ngram(sequences, token_indice, ngram_range=2): """ Augment the input list of list (sequences) by appending n-grams values. Example: adding bi-gram >>> sequences = [[1, 3, 4, 5], [1, 3, 7, 9, 2]] >>> token_indice = {(1, 3): 1337, (9, 2): 42, (4, 5): 2017} >>> add_ngram(sequences, token_indice, ngram_range=2) [[1, 3, 4, 5, 1337, 2017], [1, 3, 7, 9, 2, 1337, 42]] Example: adding tri-gram >>> sequences = [[1, 3, 4, 5], [1, 3, 7, 9, 2]] >>> token_indice = {(1, 3): 1337, (9, 2): 42, (4, 5): 2017, (7, 9, 2): 2018} >>> add_ngram(sequences, token_indice, ngram_range=3) [[1, 3, 4, 5, 1337], [1, 3, 7, 9, 2, 1337, 2018]] """ new_sequences = [] for input_list in sequences: new_list = input_list[:] for i in range(len(new_list) - ngram_range + 1): for ngram_value in range(2, ngram_range + 1): ngram = tuple(new_list[i:i + ngram_value]) if ngram in token_indice: new_list.append(token_indice[ngram]) new_sequences.append(new_list) return new_sequences class FastTextClassifier: def __init__(self): pass def predict(self, X): x_test = self.tokenizer.texts_to_sequences(X) x_test = self.add_ngrams(x_test) x_test = sequence.pad_sequences(x_test, maxlen=self.maxlen) return self.model.predict_classes(x_test, verbose=0).flatten() def predict_proba(self, X): x_test = self.tokenizer.texts_to_sequences(X) x_test = self.add_ngrams(x_test) x_test = sequence.pad_sequences(x_test, maxlen=self.maxlen) a = self.model.predict(x_test).flatten() a = a.reshape(-1, 1) return np.hstack((1 - a, a)) def fit(self, X, Y, ngram_range=1, max_features=20000, maxlen=400, batch_size=32, embedding_dims=50, epochs=5): self.tokenizer = keras.preprocessing.text.Tokenizer( num_words=max_features, split=" ", char_level=False) self.tokenizer.fit_on_texts(X) x_train = self.tokenizer.texts_to_sequences(X) self.ngram_range = ngram_range self.maxlen = maxlen self.add_ngrams = lambda x: x if ngram_range > 1: ngram_set = set() for input_list in x_train: for i in range(2, ngram_range + 1): set_of_ngram = create_ngram_set(input_list, ngram_value=i) ngram_set.update(set_of_ngram) # Dictionary mapping n-gram token to a unique integer. # Integer values are greater than max_features in order # to avoid collision with existing features. start_index = max_features + 1 self.token_indice = {v: k + start_index for k, v in enumerate(ngram_set)} indice_token = {self.token_indice[k]: k for k in self.token_indice} # max_features is the highest integer that could be found in the dataset. max_features = np.max(list(indice_token.keys())) + 1 self.add_ngrams = lambda x: add_ngram(x, self.token_indice, self.ngram_range) x_train = self.add_ngrams(x_train) print('Average train sequence length: {}'.format(np.mean(list(map(len, x_train)), dtype=int))) x_train = sequence.pad_sequences(x_train, maxlen=self.maxlen) self.model = Sequential() # we start off with an efficient embedding layer which maps # our vocab indices into embedding_dims dimensions self.model.add(Embedding(max_features, embedding_dims, input_length=self.maxlen)) # we add a GlobalAveragePooling1D, which will average the embeddings # of all words in the document self.model.add(GlobalAveragePooling1D()) # We project onto a single unit output layer, and squash via sigmoid: self.model.add(Dense(1, activation='sigmoid')) self.model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) self.model.fit(x_train, Y, batch_size=batch_size, epochs=epochs, verbose=2) def get_most_common_embeddings(tokenizer, nlp): import operator most_common = list(map(operator.itemgetter(0), sorted(tokenizer.word_index.items(), key=operator.itemgetter(1)))) n = len(tokenizer.word_index) if tokenizer.num_words is not None: most_common = most_common[:tokenizer.num_words] n = min(tokenizer.num_words, n) embeddings = np.zeros((n + 1, nlp.vocab[0].vector.shape[0]), dtype='float32') tokenized = nlp.tokenizer.pipe([x for x in most_common]) for i, lex in enumerate(tokenized): if lex.has_vector: embeddings[i + 1] = lex.vector return embeddings class CNNClassifier: def __init__(self, nlp): self.nlp = nlp pass def predict(self, X): return self.predict_proba(X).argmax(axis=1) def predict_proba(self, X): x_test = self.tokenizer.texts_to_sequences(X) x_test = sequence.pad_sequences(x_test, maxlen=self.maxlen) a = self.model.predict(x_test, verbose=0).flatten() a = a.reshape(-1, 1) return np.hstack((1 - a, a)) def fit(self, X, Y, max_features=20000, maxlen=400, batch_size=32, hidden_dims=250, filters=250, kernel_size=3, epochs=5): from keras.preprocessing import sequence from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.layers import Embedding from keras.layers import Conv1D, GlobalMaxPooling1D self.tokenizer = keras.preprocessing.text.Tokenizer( num_words=max_features, split=" ", char_level=False) self.tokenizer.fit_on_texts(X) x_train = self.tokenizer.texts_to_sequences(X) self.maxlen = maxlen embeddings = get_most_common_embeddings(self.tokenizer, self.nlp) x_train = sequence.pad_sequences(x_train, maxlen=self.maxlen) self.model = Sequential() # we start off with an efficient embedding layer which maps # our vocab indices into embedding_dims dimensions self.model.add( Embedding( embeddings.shape[0], embeddings.shape[1], input_length=maxlen, trainable=False, weights=[embeddings] ) ) self.model.add(Dropout(0.2)) # we add a Convolution1D, which will learn filters # word group filters of size filter_length: self.model.add(Conv1D(filters, kernel_size, padding='valid', activation='relu', strides=1)) # we use max pooling: self.model.add(GlobalMaxPooling1D()) # We add a vanilla hidden layer: self.model.add(Dense(hidden_dims)) self.model.add(Dropout(0.2)) self.model.add(Activation('relu')) # We project onto a single unit output layer, and squash it with a sigmoid: self.model.add(Dense(1)) # model.add(Dense(3)) self.model.add(Activation('sigmoid')) # optimizer = keras.optimizers.Adam(lr=0.001) optimizer = keras.optimizers.Adam(lr=0.0001) # model.compile(loss='categorical_crossentropy', # optimizer=optimizer, # metrics=['accuracy']) self.model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) self.model.fit(x_train, Y, batch_size=batch_size, epochs=epochs, verbose=2)