from torchvision import datasets, transforms
import torch


def load_data(root_path, dir, batch_size, phase):
    transform_dict = {
        'src': transforms.Compose(
        [transforms.RandomResizedCrop(224),
         transforms.RandomHorizontalFlip(),
         transforms.ToTensor(),
         transforms.Normalize(mean=[0.485, 0.456, 0.406],
                              std=[0.229, 0.224, 0.225]),
         ]),
        'tar': transforms.Compose(
        [transforms.Resize(224),
         transforms.ToTensor(),
         transforms.Normalize(mean=[0.485, 0.456, 0.406],
                              std=[0.229, 0.224, 0.225]),
         ])}
    data = datasets.ImageFolder(root=root_path + dir, transform=transform_dict[phase])
    data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4)
    return data_loader

def load_train(root_path, dir, batch_size, phase):
    transform_dict = {
        'src': transforms.Compose(
            [transforms.RandomResizedCrop(224),
             transforms.RandomHorizontalFlip(),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225]),
             ]),
        'tar': transforms.Compose(
            [transforms.Resize(224),
             transforms.ToTensor(),
             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225]),
             ])}
    data = datasets.ImageFolder(root=root_path + dir, transform=transform_dict[phase])
    train_size = int(0.8 * len(data))
    test_size = len(data) - train_size
    data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size])
    train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4)
    val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4)
    return train_loader, val_loader