import spacy
import html
import string
import numpy as np
import matplotlib.pyplot as plt
from spacy.lang.en import English
from sklearn.preprocessing import LabelEncoder
from IPython.core.display import display, HTML
from sklearn.feature_extraction.text import CountVectorizer

# Tokenizer is class instead of function to avoid multiple reloads of parser, stopwords and punctuation
# Uses spacy's inbuilt language tool for preprocessing
# in English [model](
class BOWTokenizer:
    """Default tokenizer used by BOWEncoder for parsing and tokenizing.
    def __init__(
        """Initialize the BOWTokenizer object.

            parser {spacy.lang.en.English - by default} -- Any parser object
                that supports parser(sentence) call on it.

        Keyword Arguments:
            stop_words {iterable over str} -- Set of stop words to be removed.
            (default: {spacy.lang.en.stop_words.STOP_WORDS})
            punctuations {iterable over str} -- Set of punctuations to be
            removed. (default: {string.punctuation})
        self.parser = parser
        # list of stop words and punctuation marks
        self.stop_words = stop_words
        self.punctuations = punctuations

    def tokenize(self, sentence, keep_ids=False):
        """Returns the sentence (or prose) as a parsed list of tokens.

            sentence {str} -- Single sentence/prose that needs to be tokenized.

        Keyword Arguments:
            keep_ids {bool} -- If True, returned tokens are indexed by their
                original positions in the parsed sentence. If False, the returned
                tokens do not preserve positionality. Has to be set to False for
                training purposes. Set to true at text/execution time, when user
                needs explanability. (default: {False})

            list -- List of all tokens extracted from the sentence.
        EMPTYTOKEN = "empty_token"
        # Creating our token object, which is used to create documents with linguistic annotations.
        mytokens = self.parser(sentence)

        # Lemmatizing each token, removing blank space and converting each token into lowercase.
        mytokens = [
            word.lemma_.lower().strip() if word.lemma_ != "-PRON-" else word.lower_
            for word in mytokens

        # Removing stop words.
        if keep_ids is True:
            return [
                if word not in self.stop_words and word not in self.punctuations
                else EMPTYTOKEN
                for word in mytokens
            return [
                for word in mytokens
                if word not in self.stop_words and word not in self.punctuations

    def parse(self, sentence):
        return self.parser(sentence)

class BOWEncoder:
    """Default encoder class with inbuilt function for decoding text that
        has been encoded by the same object. Also supports label encoding.
        Can be used as a skeleton to build more sophisticated encoders on top.
    def __init__(self):
        """Initializes the Encoder object and sets internal tokenizer,
            labelEncoder and vectorizer using predefined objects.
        self.tokenizer = BOWTokenizer(
        )  # the tokenizer must have a tokenize() and parse() function.
        self.labelEncoder = LabelEncoder()
        self.vectorizer = CountVectorizer(
            tokenizer=self.tokenizer.tokenize, ngram_range=(1, 1)
        self.decode_params = {}

    # The keep_ids flag, is used by explain local in the explainer to decode
    # importances over raw features.
    def encode_features(self, X_str, needs_fit=True, keep_ids=False):
        """Encodes the dataset from string form to encoded vector form using
            the tokenizer and vectorizer.

            X_str {[iterable over strings]} -- The X data in string form.

        Keyword Arguments:
            needs_fit {bool} -- Whether the vectorizer itself needs to be
                trained or not. (default: {True})
            keep_ids {bool} -- Whether to preserve position of encoded words
                with respect to raw document. Has to be False for training. Has to
                be True for explanations and decoding.(default: {False})

            [List with 2 components] --
            * X_vec -- The dataset vectorized and encoded to numeric form.
            * self.vectorizer -- trained vectorizer.
        # encoding while preserving ids, used only for importance computation
        # and not during training
        if keep_ids is True and isinstance(X_str, str):
            X_str = self.tokenizer.tokenize(X_str, keep_ids=True)
        # needs_fit will be set to true if encoder is not already trained
        if needs_fit is True:
        if isinstance(X_str, str):
            X_str = [X_str]
        X_vec = self.vectorizer.transform(X_str)
        return [X_vec, self.vectorizer]

    def encode_labels(self, y_str, needs_fit=True):
        """Uses the default label encoder to encode labels into vector form.

            y_str {Iterable over str} -- array-like w. label names as elements

        Keyword Arguments:
            needs_fit {bool} -- Does the label encoder need training.
            (default: {True})

            [List with 2 components] --
            * y_vec -- The labels vectorized and encoded to numeric form.
            * self.labelEncoder -- trained label encoder object.
        y_str = np.asarray(y_str[:]).reshape(-1, 1)
        if needs_fit is True:
            y_vec = self.labelEncoder.fit_transform(y_str)
            y_vec = self.labelEncoder.transform(y_str)
        return [y_vec, self.labelEncoder]

    def decode_imp(self, encoded_imp, input_text):
        """Decodes importances over encoded features as importances over
        raw features. Assumes the encoding was done with the same object.
        Operates on a datapoint-by-datapoint basis.

            encoded_imp {list} -- List of importances in order of
                encoded features.
            input_text {[list]} -- List containing raw text over which
                importances are to be returned.

            [List with 2 components] --
            * decoded_imp -- Importances with 1:1 mapping to parsed sent.
            * parsed_sentence -- Raw text parsed as list with individual raw
        EMPTYTOKEN = "empty_token"
        parsed_sentence = []
        # obtain parsed sentence, while preserving token -> position in sentence mapping
        for i in self.tokenizer.parse(input_text):
            parsed_sentence += [str(i)]
        encoded_text = self.tokenizer.tokenize(input_text, keep_ids=True)

        # replace words with an empty token if deleted when tokenizing
        encoded_word_ids = [
            None if word == EMPTYTOKEN else self.vectorizer.vocabulary_.get(word)
            for word in encoded_text
        # obtain word importance corresponding to the word vectors of the encoded sentence
        decoded_imp = [
            0 if idx is None else encoded_imp[idx] for idx in encoded_word_ids
        return (decoded_imp, parsed_sentence)

def plot_local_imp(parsed_sentence, word_importances, max_alpha=0.5):
    """Plots the top importances for a parsed sentence when corresponding
        importances are available.
        Internal fast prototyping tool for easy visualization.
        Serves as a visual proxy for dashboard.

        parsed_sentence {[list]} -- Raw text parsed as list with individual raw
        word_importances {[list]} -- Importances with 1:1 mapping to parsed

    Keyword Arguments:
        max_alpha {float} -- Changes intensity of coloring returned by the tool.
            (default: {0.5})
    # Prevent special characters like & and < to cause the browser...
    # to display something other than what you intended.
    def html_escape(text):
        return html.escape(text)

    word_importances = 100.0 * word_importances / (np.sum(np.abs(word_importances)))

    highlighted_text = []
    for i, word in enumerate(parsed_sentence):
        weight = word_importances[i]
        if weight > 0:
                '<span style="background-color:rgba(135,206,250,'
                + str(abs(weight) / max_alpha)
                + ');">'
                + html_escape(word)
                + "</span>"
        elif weight < 0:
                '<span style="background-color:rgba(250,0,0,'
                + str(abs(weight) / max_alpha)
                + ');">'
                + html_escape(word)
                + "</span>"

    highlighted_text = " ".join(highlighted_text)

def plot_global_imp(top_words, top_importances, label_name):
    """Plot top 20 global importances as a matplotlib bar graph.

        top_words {list} -- Words with 1:1 mapping to top_importances.
        top_importances {list} -- Top importance values for top words.
        label_name {str} -- Label for which importances are being displayed.
    plt.figure(figsize=(14, 7))
    plt.title("most important words for class label: " + str(label_name), fontsize=18), top_importances, color="r", align="center")
    plt.xticks(range(len(top_importances)), top_words, rotation=60, fontsize=18)