# -*- encoding: utf-8 -*- # # Copyright © 2016-2018 Red Hat, Inc. # Copyright © 2014-2015 eNovance # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Time series data manipulation, better with pancetta.""" import collections import functools import math import operator import random import re import struct import time import lz4.block import numpy import six from gnocchi import calendar UNIX_UNIVERSAL_START64 = numpy.datetime64("1970", 'ns') ONE_SECOND = numpy.timedelta64(1, 's') class BeforeEpochError(Exception): """Error raised when a timestamp before Epoch is used.""" def __init__(self, timestamp): self.timestamp = timestamp super(BeforeEpochError, self).__init__( "%s is before Epoch" % timestamp) class UnknownAggregationMethod(Exception): """Error raised when the aggregation method is unknown.""" def __init__(self, agg): self.aggregation_method = agg super(UnknownAggregationMethod, self).__init__( "Unknown aggregation method `%s'" % agg) class InvalidData(ValueError): """Error raised when data are corrupted.""" def __init__(self): super(InvalidData, self).__init__("Unable to unpack, invalid data") def datetime64_to_epoch(dt): return (dt - UNIX_UNIVERSAL_START64) / ONE_SECOND def round_timestamp(ts, freq): return UNIX_UNIVERSAL_START64 + numpy.floor( (ts - UNIX_UNIVERSAL_START64) / freq) * freq TIMESERIES_ARRAY_DTYPE = [('timestamps', '<datetime64[ns]'), ('values', '<d')] def make_timeseries(timestamps, values): """Return a Numpy array representing a timeseries. This array specifies correctly the data types, which is important for Numpy to operate fastly. """ l = len(timestamps) if l != len(values): raise ValueError("Timestamps and values must have the same length") arr = numpy.zeros(l, dtype=TIMESERIES_ARRAY_DTYPE) arr['timestamps'] = timestamps arr['values'] = values return arr def combine_timeseries(ts1, ts2): """Combine a timeseries into this one. The timeseries does not need to be sorted. If a timestamp is present in both `ts1` and `ts2`, then value from `ts1` is used. :param ts: The timeseries to combine. :return: A new timeseries. """ ts = numpy.concatenate((ts1, ts2)) _, index = numpy.unique(ts['timestamps'], return_index=True) return ts[index] class GroupedTimeSeries(object): def __init__(self, ts, granularity, start=None): # NOTE(sileht): The whole class assumes ts is ordered and don't have # duplicate timestamps, it uses numpy.unique that sorted list, but # we always assume the orderd to be the same as the input. self.granularity = granularity self.can_derive = isinstance(granularity, numpy.timedelta64) self.start = start if start is None: self._ts = ts self._ts_for_derive = ts else: self._ts = ts[numpy.searchsorted(ts['timestamps'], start):] if self.can_derive: start_derive = start - granularity self._ts_for_derive = ts[ numpy.searchsorted(ts['timestamps'], start_derive): ] if self.can_derive: self.indexes = round_timestamp(self._ts['timestamps'], granularity) elif calendar.GROUPINGS.get(granularity): self.indexes = calendar.GROUPINGS.get(granularity)( self._ts['timestamps']) self.tstamps, self.counts = numpy.unique(self.indexes, return_counts=True) @staticmethod def _sum(values, counts): return numpy.bincount( numpy.repeat(numpy.arange(counts.size), counts), weights=values) def mean(self): return make_timeseries( self.tstamps, self._sum(self._ts['values'], self.counts) / self.counts) def sum(self): return make_timeseries(self.tstamps, self._sum(self._ts['values'], self.counts)) def min(self): ordered = self._ts['values'].argsort() uniq_inv = numpy.repeat(numpy.arange(self.counts.size), self.counts) values = numpy.zeros(self.tstamps.size) values[uniq_inv[ordered][::-1]] = self._ts['values'][ordered][::-1] return make_timeseries(self.tstamps, values) def max(self): ordered = self._ts['values'].argsort() uniq_inv = numpy.repeat(numpy.arange(self.counts.size), self.counts) values = numpy.zeros(self.tstamps.size) values[uniq_inv[ordered]] = self._ts['values'][ordered] return make_timeseries(self.tstamps, values) def median(self): ordered = numpy.lexsort((self._ts['values'], self.indexes)) # TODO(gordc): can use np.divmod when centos supports numpy 1.13 mid_diff = numpy.floor_divide(self.counts, 2) odd = numpy.mod(self.counts, 2) mid_floor = (numpy.cumsum(self.counts) - 1) - mid_diff mid_ceil = mid_floor + (odd + 1) % 2 return make_timeseries( self.tstamps, (self._ts['values'][ordered][mid_floor] + self._ts['values'][ordered][mid_ceil]) / 2.0) def std(self): values = self._sum(self._ts['values'], self.counts) / self.counts diff_sq = numpy.square(self._ts['values'] - numpy.repeat(values, self.counts)) bin_sum = numpy.bincount( numpy.repeat(numpy.arange(self.counts.size), self.counts), weights=diff_sq) return make_timeseries(self.tstamps[self.counts > 1], numpy.sqrt(bin_sum[self.counts > 1] / (self.counts[self.counts > 1] - 1))) def count(self): return make_timeseries(self.tstamps, self.counts) def last(self): cumcounts = numpy.cumsum(self.counts) - 1 values = self._ts['values'][cumcounts] return make_timeseries(self.tstamps, values) def first(self): cumcounts = numpy.cumsum(self.counts) - self.counts values = self._ts['values'][cumcounts] return make_timeseries(self.tstamps, values) def quantile(self, q): ordered = numpy.lexsort((self._ts['values'], self.indexes)) min_pos = numpy.cumsum(self.counts) - self.counts real_pos = min_pos + (self.counts - 1) * (q / 100) floor_pos = numpy.floor(real_pos).astype(numpy.int, copy=False) ceil_pos = numpy.ceil(real_pos).astype(numpy.int, copy=False) values = ( self._ts['values'][ordered][floor_pos] * (ceil_pos - real_pos) + self._ts['values'][ordered][ceil_pos] * (real_pos - floor_pos)) # NOTE(gordc): above code doesn't compute proper value if pct lands on # exact index, it sets it to 0. we need to set it properly here exact_pos = numpy.equal(floor_pos, ceil_pos) values[exact_pos] = self._ts['values'][ordered][floor_pos][exact_pos] return make_timeseries(self.tstamps, values) def derived(self): if not self.can_derive: raise TypeError('Cannot derive aggregates on calendar ' 'granularities.') timestamps = self._ts_for_derive['timestamps'][1:] values = numpy.diff(self._ts_for_derive['values']) # FIXME(sileht): create some alternative __init__ to avoid creating # useless Numpy object, recounting, timestamps convertion, ... return GroupedTimeSeries(make_timeseries(timestamps, values), self.granularity, self.start) class TimeSerie(object): """A representation of series of a timestamp with a value. Duplicate timestamps are not allowed and will be filtered to use the last in the group when the TimeSerie is created or extended. """ def __init__(self, ts=None): if ts is None: ts = make_timeseries([], []) self.ts = ts def __iter__(self): return six.moves.zip(self.ts['timestamps'], self.ts['values']) @classmethod def from_data(cls, timestamps=None, values=None): return cls(make_timeseries(timestamps, values)) def __eq__(self, other): return (isinstance(other, TimeSerie) and numpy.array_equal(self.ts, other.ts)) def __getitem__(self, key): if isinstance(key, numpy.datetime64): idx = numpy.searchsorted(self.timestamps, key) if self.timestamps[idx] == key: return self[idx] raise KeyError(key) if isinstance(key, slice): if isinstance(key.start, numpy.datetime64): start = numpy.searchsorted(self.timestamps, key.start) else: start = key.start if isinstance(key.stop, numpy.datetime64): stop = numpy.searchsorted(self.timestamps, key.stop) else: stop = key.stop key = slice(start, stop, key.step) return self.ts[key] def _merge(self, ts): """Merge a Numpy timeseries into this one.""" self.ts = combine_timeseries(ts, self.ts) def merge(self, ts): """Merge a TimeSerie into this one.""" return self._merge(ts.ts) def set_values(self, values): """Set values into this timeseries. :param values: A list of tuple (timestamp, value). """ return self._merge(values) def __len__(self): return len(self.ts) @property def timestamps(self): return self.ts['timestamps'] @property def values(self): return self.ts['values'] @property def first(self): try: return self.timestamps[0] except IndexError: return @property def last(self): try: return self.timestamps[-1] except IndexError: return def group_serie(self, granularity, start=None): # NOTE(jd) Our whole serialization system is based on Epoch, and we # store unsigned integer, so we can't store anything before Epoch. # Sorry! if len(self.ts) != 0 and self.first < UNIX_UNIVERSAL_START64: raise BeforeEpochError(self.first) return GroupedTimeSeries(self.ts, granularity, start) @staticmethod def _compress(payload): # FIXME(jd) lz4 > 0.9.2 returns bytearray instead of bytes. But Cradox # does not accept bytearray but only bytes, so make sure that we have a # byte type returned. return memoryview(lz4.block.compress(payload)).tobytes() class BoundTimeSerie(TimeSerie): def __init__(self, ts=None, block_size=None, back_window=0): """A time serie that is limited in size. Used to represent the full-resolution buffer of incoming raw datapoints associated with a metric. The maximum size of this time serie is expressed in a number of block size, called the back window. When the timeserie is truncated, a whole block is removed. You cannot set a value using a timestamp that is prior to the last timestamp minus this number of blocks. By default, a back window of 0 does not allow you to go back in time prior to the current block being used. """ super(BoundTimeSerie, self).__init__(ts) self.block_size = block_size self.back_window = back_window @classmethod def from_data(cls, timestamps=None, values=None, block_size=None, back_window=0): return cls(make_timeseries(timestamps, values), block_size=block_size, back_window=back_window) def __eq__(self, other): return (isinstance(other, BoundTimeSerie) and super(BoundTimeSerie, self).__eq__(other) and self.block_size == other.block_size and self.back_window == other.back_window) def set_values(self, values, before_truncate_callback=None): """Set the timestamps and values in this timeseries. :param values: A sorted timeseries array. :param before_truncate_callback: A callback function to call before truncating the BoundTimeSerie to its maximum size. :return: None of the return value of before_truncate_callback """ if self.block_size is not None and len(self.ts) != 0: index = numpy.searchsorted(values['timestamps'], self.first_block_timestamp()) values = values[index:] super(BoundTimeSerie, self).set_values(values) if before_truncate_callback: return_value = before_truncate_callback(self) else: return_value = None self._truncate() return return_value _SERIALIZATION_TIMESTAMP_VALUE_LEN = struct.calcsize("<Qd") _SERIALIZATION_TIMESTAMP_LEN = struct.calcsize("<Q") @classmethod def unserialize(cls, data, block_size, back_window): uncompressed = lz4.block.decompress(data) nb_points = ( len(uncompressed) // cls._SERIALIZATION_TIMESTAMP_VALUE_LEN ) try: timestamps = numpy.frombuffer(uncompressed, dtype='<Q', count=nb_points) values = numpy.frombuffer( uncompressed, dtype='<d', offset=nb_points * cls._SERIALIZATION_TIMESTAMP_LEN) except ValueError: raise InvalidData return cls.from_data( numpy.cumsum(timestamps), values, block_size=block_size, back_window=back_window) def serialize(self): # NOTE(jd) Use a double delta encoding for timestamps timestamps = numpy.empty(self.timestamps.size, dtype='<Q') timestamps[0] = self.first timestamps[1:] = numpy.diff(self.timestamps) return self._compress(timestamps.tobytes() + self.values.tobytes()) @classmethod def benchmark(cls): """Run a speed benchmark!""" points = SplitKey.POINTS_PER_SPLIT serialize_times = 50 now = numpy.datetime64("2015-04-03 23:11") timestamps = numpy.sort(numpy.array( [now + numpy.timedelta64(random.randint(1000000, 10000000), 'us') for i in six.moves.range(points)])) print(cls.__name__) print("=" * len(cls.__name__)) for title, values in [ ("Simple continuous range", six.moves.range(points)), ("All 0", [float(0)] * points), ("All 1", [float(1)] * points), ("0 and 1", [0, 1] * (points // 2)), ("1 and 0 random", [random.randint(0, 1) for x in six.moves.range(points)]), ("Small number random pos/neg", [random.randint(-100000, 10000) for x in six.moves.range(points)]), ("Small number random pos", [random.randint(0, 20000) for x in six.moves.range(points)]), ("Small number random neg", [random.randint(-20000, 0) for x in six.moves.range(points)]), ("Sin(x)", list(map(math.sin, six.moves.range(points)))), ("random ", [random.random() for x in six.moves.range(points)]), ]: print(title) ts = cls.from_data(timestamps, values) t0 = time.time() for i in six.moves.range(serialize_times): s = ts.serialize() t1 = time.time() print(" Serialization speed: %.2f MB/s" % (((points * 2 * 8) / ((t1 - t0) / serialize_times)) / (1024.0 * 1024.0))) print(" Bytes per point: %.2f" % (len(s) / float(points))) t0 = time.time() for i in six.moves.range(serialize_times): cls.unserialize(s, ONE_SECOND, 1) t1 = time.time() print(" Unserialization speed: %.2f MB/s" % (((points * 2 * 8) / ((t1 - t0) / serialize_times)) / (1024.0 * 1024.0))) def first_block_timestamp(self): """Return the timestamp of the first block.""" rounded = round_timestamp(self.timestamps[-1], self.block_size) return rounded - (self.block_size * self.back_window) def _truncate(self): """Truncate the timeserie.""" if self.block_size is not None and len(self.ts) != 0: # Change that to remove the amount of block needed to have # the size <= max_size. A block is a number of "seconds" (a # timespan) self.ts = self[self.first_block_timestamp():] @functools.total_ordering class SplitKey(object): """A class representing a split key. A split key is basically a timestamp that can be used to split `AggregatedTimeSerie` objects in multiple parts. Each part will contain `SplitKey.POINTS_PER_SPLIT` points. The split key for a given granularity are regularly spaced. """ __slots__ = ( 'key', 'sampling', ) POINTS_PER_SPLIT = 3600 def __init__(self, value, sampling): if isinstance(value, SplitKey): self.key = value.key else: self.key = value self.sampling = sampling @classmethod def from_timestamp_and_sampling(cls, timestamp, sampling): return cls( round_timestamp( timestamp, freq=sampling * cls.POINTS_PER_SPLIT), sampling) def __next__(self): """Get the split key of the next split. :return: A `SplitKey` object. """ return self.__class__( self.key + self.sampling * self.POINTS_PER_SPLIT, self.sampling) next = __next__ def __iter__(self): return self def __hash__(self): return hash(str(self.key.astype('datetime64[ns]')) + str(self.sampling.astype('timedelta64[ns]'))) def _compare(self, op, other): if isinstance(other, SplitKey): if self.sampling != other.sampling: if op == operator.eq: return False if op == operator.ne: return True raise TypeError( "Cannot compare %s with different sampling" % self.__class__.__name__) return op(self.key, other.key) if isinstance(other, numpy.datetime64): return op(self.key, other) raise TypeError("Cannot compare %r with %r" % (self, other)) def __lt__(self, other): return self._compare(operator.lt, other) def __eq__(self, other): return self._compare(operator.eq, other) def __ne__(self, other): # neither total_ordering nor py2 sets ne as the opposite of eq return self._compare(operator.ne, other) def __str__(self): return str(float(self)) def __float__(self): return datetime64_to_epoch(self.key) def __repr__(self): return "<%s: %s / %s>" % (self.__class__.__name__, self.key, self.sampling) Aggregation = collections.namedtuple( "Aggregation", ["method", "granularity", "timespan"], ) class AggregatedTimeSerie(TimeSerie): _AGG_METHOD_PCT_RE = re.compile(r"([1-9][0-9]?)pct") PADDED_SERIAL_LEN = struct.calcsize("<?d") COMPRESSED_SERIAL_LEN = struct.calcsize("<Hd") COMPRESSED_TIMESPAMP_LEN = struct.calcsize("<H") def __init__(self, aggregation, ts=None): """A time serie that is downsampled. Used to represent the downsampled timeserie for a single granularity/aggregation-function pair stored for a metric. """ super(AggregatedTimeSerie, self).__init__(ts) self.aggregation = aggregation def resample(self, sampling): return AggregatedTimeSerie.from_grouped_serie( self.group_serie(sampling), Aggregation(self.aggregation.method, sampling, self.aggregation.timespan)) @classmethod def from_data(cls, aggregation, timestamps, values): return cls(aggregation=aggregation, ts=make_timeseries(timestamps, values)) @staticmethod def _get_agg_method(aggregation_method): q = None m = AggregatedTimeSerie._AGG_METHOD_PCT_RE.match(aggregation_method) if m: q = float(m.group(1)) aggregation_method_func_name = 'quantile' else: if not hasattr(GroupedTimeSeries, aggregation_method): raise UnknownAggregationMethod(aggregation_method) aggregation_method_func_name = aggregation_method return aggregation_method_func_name, q def truncate(self, oldest_point=None): """Truncate the time series up to oldest_point excluded. :param oldest_point: Oldest point to keep from, this excluded. Default is the aggregation timespan. :type oldest_point: numpy.datetime64 or numpy.timedelta64 :return: The oldest point that could have been kept. """ last = self.last if last is None: return if oldest_point is None: oldest_point = self.aggregation.timespan if oldest_point is None: return if isinstance(oldest_point, numpy.timedelta64): oldest_point = last - oldest_point index = numpy.searchsorted(self.ts['timestamps'], oldest_point, side='right') self.ts = self.ts[index:] return oldest_point def split(self): # NOTE(sileht): We previously use groupby with # SplitKey.from_timestamp_and_sampling, but # this is slow because pandas can do that on any kind DataFrame # but we have ordered timestamps, so don't need # to iter the whole series. freq = self.aggregation.granularity * SplitKey.POINTS_PER_SPLIT keys, counts = numpy.unique( round_timestamp(self.timestamps, freq), return_counts=True) start = 0 for key, count in six.moves.zip(keys, counts): end = start + count yield (SplitKey(key, self.aggregation.granularity), AggregatedTimeSerie(self.aggregation, self[start:end])) start = end @classmethod def from_timeseries(cls, timeseries, aggregation): # NOTE(gordc): Indices must be unique across all timeseries. Also, # timeseries should be a list that is ordered within list and series. if timeseries: ts = numpy.concatenate([ts.ts for ts in timeseries]) else: ts = None return cls(aggregation=aggregation, ts=ts) @classmethod def from_grouped_serie(cls, grouped_serie, aggregation): if aggregation.method.startswith("rate:"): grouped_serie = grouped_serie.derived() aggregation_method_name = aggregation.method[5:] else: aggregation_method_name = aggregation.method agg_name, q = cls._get_agg_method(aggregation_method_name) return cls(aggregation, ts=cls._resample_grouped(grouped_serie, agg_name, q)) def __eq__(self, other): return (isinstance(other, AggregatedTimeSerie) and super(AggregatedTimeSerie, self).__eq__(other) and self.aggregation == other.aggregation) def __repr__(self): return "<%s 0x%x granularity=%s agg_method=%s>" % ( self.__class__.__name__, id(self), self.aggregation.granularity, self.aggregation.method, ) @staticmethod def is_compressed(serialized_data): """Check whatever the data was serialized with compression.""" return six.indexbytes(serialized_data, 0) == ord("c") @classmethod def unserialize(cls, data, key, aggregation): """Unserialize an aggregated timeserie. :param data: Raw data buffer. :param key: A :class:`SplitKey` key. :param aggregation: The Aggregation object of this timeseries. """ x, y = [], [] if data: if cls.is_compressed(data): # Compressed format uncompressed = lz4.block.decompress( memoryview(data)[1:].tobytes()) nb_points = len(uncompressed) // cls.COMPRESSED_SERIAL_LEN try: y = numpy.frombuffer(uncompressed, dtype='<H', count=nb_points) x = numpy.frombuffer( uncompressed, dtype='<d', offset=nb_points*cls.COMPRESSED_TIMESPAMP_LEN) except ValueError: raise InvalidData() y = numpy.cumsum(y * key.sampling) + key.key else: # Padded format try: everything = numpy.frombuffer(data, dtype=[('b', '<?'), ('v', '<d')]) except ValueError: raise InvalidData() index = numpy.nonzero(everything['b'])[0] y = index * key.sampling + key.key x = everything['v'][index] return cls.from_data(aggregation, y, x) def get_split_key(self, timestamp=None): """Return the split key for a particular timestamp. :param timestamp: If None, the first timestamp of the timeseries is used. :return: A SplitKey object or None if the timeseries is empty. """ if timestamp is None: timestamp = self.first if timestamp is None: return return SplitKey.from_timestamp_and_sampling( timestamp, self.aggregation.granularity) def serialize(self, start, compressed=True): """Serialize an aggregated timeserie. The serialization starts with a byte that indicate the serialization format: 'c' for compressed format, '\x00' or '\x01' for uncompressed format. Both format can be unserialized using the `unserialize` method. The offset returned indicates at which offset the data should be written from. In the case of compressed data, this is always 0. :param start: SplitKey to start serialization at. :param compressed: Serialize in a compressed format. :return: a tuple of (offset, data) """ offset_div = self.aggregation.granularity # calculate how many seconds from start the series runs until and # initialize list to store alternating delimiter, float entries if compressed: # NOTE(jd) Use a double delta encoding for timestamps timestamps = numpy.empty(self.timestamps.size, dtype='<H') timestamps[0] = (self.first - start.key) / offset_div timestamps[1:] = numpy.diff(self.timestamps) / offset_div payload = (timestamps.tobytes() + self.values.tobytes()) return None, b"c" + self._compress(payload) # NOTE(gordc): this binary serializes series based on the split # time. the format is 1B True/False flag which denotes whether # subsequent 8B is a real float or zero padding. every 9B # represents one second from start time. this is intended to be run # on data already split. ie. False,0,True,0 serialization means # start datapoint is padding, and 1s after start time, the # aggregate value is 0. calculate how many seconds from start the # series runs until and initialize list to store alternating # delimiter, float entries first = self.first # NOTE(jd) needed because faster e_offset = int((self.last - first) / offset_div) + 1 locs = numpy.zeros(self.timestamps.size, dtype=numpy.int) locs[1:] = numpy.cumsum(numpy.diff(self.timestamps)) / offset_div # Fill everything with zero and set serial = numpy.zeros((e_offset,), dtype=[('b', '<?'), ('v', '<d')]) serial['b'][locs] = numpy.ones_like(self.values, dtype='<?') serial['v'][locs] = self.values offset = int((first - start.key) / offset_div) * self.PADDED_SERIAL_LEN return offset, serial.tobytes() @staticmethod def _resample_grouped(grouped_serie, agg_name, q=None): agg_func = getattr(grouped_serie, agg_name) return agg_func(q) if agg_name == 'quantile' else agg_func() def fetch(self, from_timestamp=None, to_timestamp=None): """Fetch aggregated time value. Returns a sorted list of tuples (timestamp, granularity, value). """ # Round timestamp to our granularity so we're sure that if e.g. 17:02 # is requested and we have points for 17:00 and 17:05 in a 5min # granularity, we do return the 17:00 point and not nothing if from_timestamp is None: from_ = None else: from_ = round_timestamp(from_timestamp, self.aggregation.granularity) return self.__class__(self.aggregation, ts=self[from_:to_timestamp]) @classmethod def benchmark(cls): """Run a speed benchmark!""" points = SplitKey.POINTS_PER_SPLIT sampling = numpy.timedelta64(5, 's') resample = numpy.timedelta64(35, 's') now = numpy.datetime64("2015-04-03 23:11") timestamps = numpy.sort(numpy.array( [now + i * sampling for i in six.moves.range(points)])) print(cls.__name__) print("=" * len(cls.__name__)) for title, values in [ ("Simple continuous range", six.moves.range(points)), ("All 0", [float(0)] * points), ("All 1", [float(1)] * points), ("0 and 1", [0, 1] * (points // 2)), ("1 and 0 random", [random.randint(0, 1) for x in six.moves.range(points)]), ("Small number random pos/neg", [random.randint(-100000, 10000) for x in six.moves.range(points)]), ("Small number random pos", [random.randint(0, 20000) for x in six.moves.range(points)]), ("Small number random neg", [random.randint(-20000, 0) for x in six.moves.range(points)]), ("Sin(x)", list(map(math.sin, six.moves.range(points)))), ("random ", [random.random() for x in six.moves.range(points)]), ]: print(title) serialize_times = 50 aggregation = Aggregation("mean", sampling, None) ts = cls.from_data(aggregation, timestamps, values) t0 = time.time() key = ts.get_split_key() for i in six.moves.range(serialize_times): e, s = ts.serialize(key, compressed=False) t1 = time.time() print(" Uncompressed serialization speed: %.2f MB/s" % (((points * 2 * 8) / ((t1 - t0) / serialize_times)) / (1024.0 * 1024.0))) print(" Bytes per point: %.2f" % (len(s) / float(points))) t0 = time.time() for i in six.moves.range(serialize_times): cls.unserialize(s, key, 'mean') t1 = time.time() print(" Unserialization speed: %.2f MB/s" % (((points * 2 * 8) / ((t1 - t0) / serialize_times)) / (1024.0 * 1024.0))) t0 = time.time() for i in six.moves.range(serialize_times): o, s = ts.serialize(key, compressed=True) t1 = time.time() print(" Compressed serialization speed: %.2f MB/s" % (((points * 2 * 8) / ((t1 - t0) / serialize_times)) / (1024.0 * 1024.0))) print(" Bytes per point: %.2f" % (len(s) / float(points))) t0 = time.time() for i in six.moves.range(serialize_times): cls.unserialize(s, key, 'mean') t1 = time.time() print(" Uncompression speed: %.2f MB/s" % (((points * 2 * 8) / ((t1 - t0) / serialize_times)) / (1024.0 * 1024.0))) def per_sec(t1, t0): return 1 / ((t1 - t0) / serialize_times) t0 = time.time() for i in six.moves.range(serialize_times): list(ts.split()) t1 = time.time() print(" split() speed: %.2f Hz" % per_sec(t1, t0)) # NOTE(sileht): propose a new series with half overload timestamps pts = ts.ts.copy() tsbis = cls(ts=pts, aggregation=aggregation) tsbis.ts['timestamps'] = ( tsbis.timestamps - numpy.timedelta64( sampling * points / 2, 's') ) t0 = time.time() for i in six.moves.range(serialize_times): ts.merge(tsbis) t1 = time.time() print(" merge() speed %.2f Hz" % per_sec(t1, t0)) for agg in ['mean', 'sum', 'max', 'min', 'std', 'median', 'first', 'last', 'count', '5pct', '90pct']: serialize_times = 3 if agg.endswith('pct') else 10 ts = cls(ts=pts, aggregation=aggregation) t0 = time.time() for i in six.moves.range(serialize_times): ts.resample(resample) t1 = time.time() print(" resample(%s) speed: %.2f Hz" % (agg, per_sec(t1, t0))) if __name__ == '__main__': import sys args = sys.argv[1:] if not args or "--boundtimeserie" in args: BoundTimeSerie.benchmark() if not args or "--aggregatedtimeserie" in args: AggregatedTimeSerie.benchmark()