from __future__ import print_function, division from keras.datasets import mnist from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization from keras.layers import Input, Dense, Reshape, Flatten, Dropout, multiply, GaussianNoise from keras.layers import BatchNormalization, Activation, Embedding, ZeroPadding2D from keras.layers import Concatenate from keras.layers.advanced_activations import LeakyReLU from keras.layers.convolutional import UpSampling2D, Conv2D from keras.models import Sequential, Model from keras.optimizers import Adam from keras import losses from keras.utils import to_categorical import keras.backend as K import scipy import matplotlib.pyplot as plt import numpy as np class CCGAN(): def __init__(self): self.img_rows = 32 self.img_cols = 32 self.channels = 1 self.img_shape = (self.img_rows, self.img_cols, self.channels) self.mask_height = 10 self.mask_width = 10 self.num_classes = 10 # Number of filters in first layer of generator and discriminator self.gf = 32 self.df = 32 optimizer = Adam(0.0002, 0.5) # Build and compile the discriminator self.discriminator = self.build_discriminator() self.discriminator.compile(loss=['mse', 'categorical_crossentropy'], loss_weights=[0.5, 0.5], optimizer=optimizer, metrics=['accuracy']) # Build the generator self.generator = self.build_generator() # The generator takes noise as input and generates imgs masked_img = Input(shape=self.img_shape) gen_img = self.generator(masked_img) # For the combined model we will only train the generator self.discriminator.trainable = False # The valid takes generated images as input and determines validity valid, _ = self.discriminator(gen_img) # The combined model (stacked generator and discriminator) # Trains the generator to fool the discriminator self.combined = Model(masked_img , valid) self.combined.compile(loss=['mse'], optimizer=optimizer) def build_generator(self): """U-Net Generator""" def conv2d(layer_input, filters, f_size=4, bn=True): """Layers used during downsampling""" d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input) d = LeakyReLU(alpha=0.2)(d) if bn: d = BatchNormalization(momentum=0.8)(d) return d def deconv2d(layer_input, skip_input, filters, f_size=4, dropout_rate=0): """Layers used during upsampling""" u = UpSampling2D(size=2)(layer_input) u = Conv2D(filters, kernel_size=f_size, strides=1, padding='same', activation='relu')(u) if dropout_rate: u = Dropout(dropout_rate)(u) u = BatchNormalization(momentum=0.8)(u) u = Concatenate()([u, skip_input]) return u img = Input(shape=self.img_shape) # Downsampling d1 = conv2d(img, self.gf, bn=False) d2 = conv2d(d1, self.gf*2) d3 = conv2d(d2, self.gf*4) d4 = conv2d(d3, self.gf*8) # Upsampling u1 = deconv2d(d4, d3, self.gf*4) u2 = deconv2d(u1, d2, self.gf*2) u3 = deconv2d(u2, d1, self.gf) u4 = UpSampling2D(size=2)(u3) output_img = Conv2D(self.channels, kernel_size=4, strides=1, padding='same', activation='tanh')(u4) return Model(img, output_img) def build_discriminator(self): img = Input(shape=self.img_shape) model = Sequential() model.add(Conv2D(64, kernel_size=4, strides=2, padding='same', input_shape=self.img_shape)) model.add(LeakyReLU(alpha=0.8)) model.add(Conv2D(128, kernel_size=4, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(InstanceNormalization()) model.add(Conv2D(256, kernel_size=4, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(InstanceNormalization()) model.summary() img = Input(shape=self.img_shape) features = model(img) validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(features) label = Flatten()(features) label = Dense(self.num_classes+1, activation="softmax")(label) return Model(img, [validity, label]) def mask_randomly(self, imgs): y1 = np.random.randint(0, self.img_rows - self.mask_height, imgs.shape[0]) y2 = y1 + self.mask_height x1 = np.random.randint(0, self.img_rows - self.mask_width, imgs.shape[0]) x2 = x1 + self.mask_width masked_imgs = np.empty_like(imgs) for i, img in enumerate(imgs): masked_img = img.copy() _y1, _y2, _x1, _x2 = y1[i], y2[i], x1[i], x2[i], masked_img[_y1:_y2, _x1:_x2, :] = 0 masked_imgs[i] = masked_img return masked_imgs def train(self, epochs, batch_size=128, sample_interval=50): # Load the dataset (X_train, y_train), (_, _) = mnist.load_data() # Rescale MNIST to 32x32 X_train = np.array([scipy.misc.imresize(x, [self.img_rows, self.img_cols]) for x in X_train]) # Rescale -1 to 1 X_train = (X_train.astype(np.float32) - 127.5) / 127.5 X_train = np.expand_dims(X_train, axis=3) y_train = y_train.reshape(-1, 1) # Adversarial ground truths valid = np.ones((batch_size, 4, 4, 1)) fake = np.zeros((batch_size, 4, 4, 1)) for epoch in range(epochs): # --------------------- # Train Discriminator # --------------------- # Sample half batch of images idx = np.random.randint(0, X_train.shape[0], batch_size) imgs = X_train[idx] labels = y_train[idx] masked_imgs = self.mask_randomly(imgs) # Generate a half batch of new images gen_imgs = self.generator.predict(masked_imgs) # One-hot encoding of labels labels = to_categorical(labels, num_classes=self.num_classes+1) fake_labels = to_categorical(np.full((batch_size, 1), self.num_classes), num_classes=self.num_classes+1) # Train the discriminator d_loss_real = self.discriminator.train_on_batch(imgs, [valid, labels]) d_loss_fake = self.discriminator.train_on_batch(gen_imgs, [fake, fake_labels]) d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) # --------------------- # Train Generator # --------------------- # Train the generator g_loss = self.combined.train_on_batch(masked_imgs, valid) # Plot the progress print ("%d [D loss: %f, op_acc: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[4], g_loss)) # If at save interval => save generated image samples if epoch % sample_interval == 0: # Select a random half batch of images idx = np.random.randint(0, X_train.shape[0], 6) imgs = X_train[idx] self.sample_images(epoch, imgs) self.save_model() def sample_images(self, epoch, imgs): r, c = 3, 6 masked_imgs = self.mask_randomly(imgs) gen_imgs = self.generator.predict(masked_imgs) imgs = (imgs + 1.0) * 0.5 masked_imgs = (masked_imgs + 1.0) * 0.5 gen_imgs = (gen_imgs + 1.0) * 0.5 gen_imgs = np.where(gen_imgs < 0, 0, gen_imgs) fig, axs = plt.subplots(r, c) for i in range(c): axs[0,i].imshow(imgs[i, :, :, 0], cmap='gray') axs[0,i].axis('off') axs[1,i].imshow(masked_imgs[i, :, :, 0], cmap='gray') axs[1,i].axis('off') axs[2,i].imshow(gen_imgs[i, :, :, 0], cmap='gray') axs[2,i].axis('off') fig.savefig("images/%d.png" % epoch) plt.close() def save_model(self): def save(model, model_name): model_path = "saved_model/%s.json" % model_name weights_path = "saved_model/%s_weights.hdf5" % model_name options = {"file_arch": model_path, "file_weight": weights_path} json_string = model.to_json() open(options['file_arch'], 'w').write(json_string) model.save_weights(options['file_weight']) save(self.generator, "ccgan_generator") save(self.discriminator, "ccgan_discriminator") if __name__ == '__main__': ccgan = CCGAN() ccgan.train(epochs=20000, batch_size=32, sample_interval=200)