#!/bin/env python # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import time import logging import os import json from multiprocessing import Process from common.utils import Util from common import hdfs_client as hdfs from common.hdfs_client import HdfsException from common.file_collector import FileWatcher from multiprocessing import Pool class Collector(object): def __init__(self, hdfs_app_path, kafkaproducer, conf_type): self._initialize_members(hdfs_app_path, kafkaproducer, conf_type) def _initialize_members(self, hdfs_app_path, kafkaproducer, conf_type): # getting parameters. self._logger = logging.getLogger('SPOT.INGEST.FLOW') self._hdfs_app_path = hdfs_app_path self._producer = kafkaproducer # get script path self._script_path = os.path.dirname(os.path.abspath(__file__)) # read flow configuration. conf_file = "{0}/ingest_conf.json".format(os.path.dirname(os.path.dirname(self._script_path))) conf = json.loads(open(conf_file).read()) self._conf = conf["pipelines"][conf_type] # set configuration. self._collector_path = self._conf['collector_path'] self._dsource = 'flow' self._hdfs_root_path = "{0}/{1}".format(hdfs_app_path, self._dsource) self._supported_files = self._conf['supported_files'] # create collector watcher self._watcher = FileWatcher(self._collector_path,self._supported_files) # Multiprocessing. self._processes = conf["collector_processes"] self._ingestion_interval = conf["ingestion_interval"] self._pool = Pool(processes=self._processes) # TODO: review re-use of hdfs.client self._hdfs_client = hdfs.get_client() def start(self): self._logger.info("Starting FLOW ingest") self._watcher.start() try: while True: self._ingest_files_pool() time.sleep(self._ingestion_interval) except KeyboardInterrupt: self._logger.info("Stopping FLOW collector...") Util.remove_kafka_topic(self._producer.Zookeeper, self._producer.Topic, self._logger) self._watcher.stop() self._pool.terminate() self._pool.close() self._pool.join() SystemExit("Ingest finished...") def _ingest_files_pool(self): if self._watcher.HasFiles: for x in range(0, self._processes): self._logger.info('processes: {0}'.format(self._processes)) new_file = self._watcher.GetNextFile() if self._processes <= 1: _ingest_file( new_file, self._hdfs_root_path, self._producer, self._producer.Topic ) else: result = self._pool.apply_async(_ingest_file, args=( new_file, self._hdfs_root_path, self._producer, self._producer.Topic )) # result.get() # to debug add try and catch. if not self._watcher.HasFiles: break return True def _ingest_file(new_file, hdfs_root_path, producer, topic): logger = logging.getLogger('SPOT.INGEST.FLOW.{0}'.format(os.getpid())) try: # get file name and date. file_name_parts = new_file.split('/') file_name = file_name_parts[len(file_name_parts)-1] file_date = file_name.split('.')[1] file_date_path = file_date[0:8] file_date_hour = file_date[8:10] # hdfs path with timestamp. hdfs_path = "{0}/binary/{1}/{2}".format(hdfs_root_path, file_date_path, file_date_hour) hdfs_file = "{0}/{1}".format(hdfs_path, file_name) try: if len(hdfs.list_dir(hdfs_path)) == 0: logger.info('creating directory: ' + hdfs_path) hdfs.mkdir(hdfs_path) logger.info('uploading file to hdfs: ' + hdfs_file) result = hdfs.upload_file(hdfs_path, new_file) if not result: logger.error('File failed to upload: ' + hdfs_file) raise HdfsException else: rm_file = "rm {0}".format(new_file) logger.info("Removing files from local staging: {0}".format(rm_file)) Util.execute_cmd(rm_file, logger) except HdfsException as err: logger.error('Exception: ' + err.exception) logger.info('Check Hdfs Connection settings and server health') except Exception as err: logger.error("There was a problem, Exception: {0}".format(err)) # create event for workers to process the file. # logger.info("Sending file to worker number: {0}".format(partition)) try: producer.SendMessage(hdfs_file, topic) logger.info("File {0} has been successfully sent to Kafka Topic to: {1}".format(hdfs_file, topic)) except Exception as err: logger.info("File {0} failed to be sent to Kafka Topic to: {1}".format(hdfs_file, topic)) logger.error("Error: {0}".format(err))