```from visma.functions.structure import FuncOp
from visma.functions.exponential import NaturalLog
import math

########################
# Hyberbolic Functions #
########################

class Sinh(FuncOp):
"""Class for sinh function -- sinh(...)

Extends:
FuncOp
"""

def __init__(self):
super().__init__()
self.value = 'sinh'

def inverse(self, RHS):
super().inverse(RHS)
self.__class__ = ArcSinh

def differentiate(self):
super().differentiate()
self.__class__ = Cosh

def integrate(self):
self.__class__ = Cosh

def calculate(self, val):
return self.coefficient * ((math.sinh(val))**self.power)

class Cosh(FuncOp):
"""Class for cosh function -- cosh(...)

Extends:
FuncOp
"""

def __init__(self):
super().__init__()
self.value = 'cosh'

def inverse(self, RHS):
super().inverse(RHS)
self.__class__ = ArcCosh

def differentiate(self):
super().differentiate()
self.__class__ = Sinh

def integrate(self):
self.__class__ = Sinh

def calculate(self, val):
return self.coefficient * ((math.cosh(val))**self.power)

class Tanh(FuncOp):
"""Class for tanh function -- tanh(...)

Extends:
FuncOp
"""

def __init__(self):
super().__init__()
self.value = 'tanh'

def inverse(self, RHS):
super().inverse(RHS)
self.__class__ = ArcTanh

def differentiate(self):
super().differentiate()
self.__class__ = Cosh       # Derivative of Tanh(x) is equal to 1-Tanh^2(x) = Sech^2(x) = Cosh^-2(x), So Class is Cosh, and Power is to be set to (-2).

def integrate(self):
self.__class__ = NaturalLog     # Ln(Cosh(x)), value is to be set to Cosh(...).

def calculate(self, val):
return self.coefficient * ((math.tanh(val)) ** self.power)

################################
# Inverse Hyperbolic Functions #
################################

class ArcSinh(FuncOp):
pass

class ArcCosh(FuncOp):
pass

class ArcTanh(FuncOp):
pass
```