This tutorial shows how to generate adversarial examples
using FGSM in black-box setting.
The original paper can be found at:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import functools

import numpy as np
from six.moves import xrange

import logging
import tensorflow as tf
from tensorflow.python.platform import flags

from cleverhans.loss import CrossEntropy
from cleverhans.model import Model
from cleverhans.utils_mnist import data_mnist
from cleverhans.utils import to_categorical
from cleverhans.utils import set_log_level
from cleverhans.utils_tf import train, model_eval, batch_eval
from cleverhans.attacks import FastGradientMethod
from cleverhans.attacks_tf import jacobian_graph, jacobian_augmentation

from cleverhans_tutorials.tutorial_models import ModelBasicCNN, \
from cleverhans.utils import TemporaryLogLevel


LMBDA = .1

def setup_tutorial():
    Helper function to check correct configuration of tf for tutorial
    :return: True if setup checks completed

    # Set TF random seed to improve reproducibility

    return True

def prep_bbox(sess, x, y, x_train, y_train, x_test, y_test,
              nb_epochs, batch_size, learning_rate,
              rng, nb_classes=10, img_rows=28, img_cols=28, nchannels=1):
    Define and train a model that simulates the "remote"
    black-box oracle described in the original paper.
    :param sess: the TF session
    :param x: the input placeholder for MNIST
    :param y: the ouput placeholder for MNIST
    :param x_train: the training data for the oracle
    :param y_train: the training labels for the oracle
    :param x_test: the testing data for the oracle
    :param y_test: the testing labels for the oracle
    :param nb_epochs: number of epochs to train model
    :param batch_size: size of training batches
    :param learning_rate: learning rate for training
    :param rng: numpy.random.RandomState

    # Define TF model graph (for the black-box model)
    nb_filters = 64
    model = ModelBasicCNN('model1', nb_classes, nb_filters)
    loss = CrossEntropy(model, smoothing=0.1)
    predictions = model.get_logits(x)
    print("Defined TensorFlow model graph.")

    # Train an MNIST model
    train_params = {
        'nb_epochs': nb_epochs,
        'batch_size': batch_size,
        'learning_rate': learning_rate
    train(sess, loss, x, y, x_train, y_train, args=train_params, rng=rng)

    # Print out the accuracy on legitimate data
    eval_params = {'batch_size': batch_size}
    accuracy = model_eval(sess, x, y, predictions, x_test, y_test,
    print('Test accuracy of black-box on legitimate test '
          'examples: ' + str(accuracy))

    return model, predictions, accuracy

class ModelSubstitute(Model):
    def __init__(self, scope, nb_classes, nb_filters=200, **kwargs):
        del kwargs
        Model.__init__(self, scope, nb_classes, locals())
        self.nb_filters = nb_filters

    def fprop(self, x, **kwargs):
        del kwargs
        my_dense = functools.partial(
            tf.layers.dense, kernel_initializer=HeReLuNormalInitializer)
        with tf.variable_scope(self.scope, reuse=tf.AUTO_REUSE):
            y = tf.layers.flatten(x)
            y = my_dense(y, self.nb_filters, activation=tf.nn.relu)
            y = my_dense(y, self.nb_filters, activation=tf.nn.relu)
            logits = my_dense(y, self.nb_classes)
            return {self.O_LOGITS: logits,
                    self.O_PROBS: tf.nn.softmax(logits=logits)}

def train_sub(sess, x, y, bbox_preds, x_sub, y_sub, nb_classes,
              nb_epochs_s, batch_size, learning_rate, data_aug, lmbda,
              aug_batch_size, rng, img_rows=28, img_cols=28,
    This function creates the substitute by alternatively
    augmenting the training data and training the substitute.
    :param sess: TF session
    :param x: input TF placeholder
    :param y: output TF placeholder
    :param bbox_preds: output of black-box model predictions
    :param x_sub: initial substitute training data
    :param y_sub: initial substitute training labels
    :param nb_classes: number of output classes
    :param nb_epochs_s: number of epochs to train substitute model
    :param batch_size: size of training batches
    :param learning_rate: learning rate for training
    :param data_aug: number of times substitute training data is augmented
    :param lmbda: lambda from arxiv.org/abs/1602.02697
    :param rng: numpy.random.RandomState instance
    # Define TF model graph (for the black-box model)
    model_sub = ModelSubstitute('model_s', nb_classes)
    preds_sub = model_sub.get_logits(x)
    loss_sub = CrossEntropy(model_sub, smoothing=0)

    print("Defined TensorFlow model graph for the substitute.")

    # Define the Jacobian symbolically using TensorFlow
    grads = jacobian_graph(preds_sub, x, nb_classes)

    # Train the substitute and augment dataset alternatively
    for rho in xrange(data_aug):
        print("Substitute training epoch #" + str(rho))
        train_params = {
            'nb_epochs': nb_epochs_s,
            'batch_size': batch_size,
            'learning_rate': learning_rate
        with TemporaryLogLevel(logging.WARNING, "cleverhans.utils.tf"):
            train(sess, loss_sub, x, y, x_sub,
                  to_categorical(y_sub, nb_classes),
                  init_all=False, args=train_params, rng=rng,

        # If we are not at last substitute training iteration, augment dataset
        if rho < data_aug - 1:
            print("Augmenting substitute training data.")
            # Perform the Jacobian augmentation
            lmbda_coef = 2 * int(int(rho / 3) != 0) - 1
            x_sub = jacobian_augmentation(sess, x, x_sub, y_sub, grads,
                                          lmbda_coef * lmbda, aug_batch_size)

            print("Labeling substitute training data.")
            # Label the newly generated synthetic points using the black-box
            y_sub = np.hstack([y_sub, y_sub])
            x_sub_prev = x_sub[int(len(x_sub)/2):]
            eval_params = {'batch_size': batch_size}
            bbox_val = batch_eval(sess, [x], [bbox_preds], [x_sub_prev],
            # Note here that we take the argmax because the adversary
            # only has access to the label (not the probabilities) output
            # by the black-box model
            y_sub[int(len(x_sub)/2):] = np.argmax(bbox_val, axis=1)

    return model_sub, preds_sub

def mnist_blackbox(train_start=0, train_end=60000, test_start=0,
                   test_end=10000, nb_classes=NB_CLASSES,
                   batch_size=BATCH_SIZE, learning_rate=LEARNING_RATE,
                   nb_epochs=NB_EPOCHS, holdout=HOLDOUT, data_aug=DATA_AUG,
                   nb_epochs_s=NB_EPOCHS_S, lmbda=LMBDA,
    MNIST tutorial for the black-box attack from arxiv.org/abs/1602.02697
    :param train_start: index of first training set example
    :param train_end: index of last training set example
    :param test_start: index of first test set example
    :param test_end: index of last test set example
    :return: a dictionary with:
             * black-box model accuracy on test set
             * substitute model accuracy on test set
             * black-box model accuracy on adversarial examples transferred
               from the substitute model

    # Set logging level to see debug information

    # Dictionary used to keep track and return key accuracies
    accuracies = {}

    # Perform tutorial setup
    assert setup_tutorial()

    # Create TF session
    sess = tf.Session()

    # Get MNIST data
    x_train, y_train, x_test, y_test = data_mnist(train_start=train_start,
    # Initialize substitute training set reserved for adversary
    x_sub = x_test[:holdout]
    y_sub = np.argmax(y_test[:holdout], axis=1)

    # Redefine test set as remaining samples unavailable to adversaries
    x_test = x_test[holdout:]
    y_test = y_test[holdout:]

    # Obtain Image parameters
    img_rows, img_cols, nchannels = x_train.shape[1:4]
    nb_classes = y_train.shape[1]

    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols,
    y = tf.placeholder(tf.float32, shape=(None,     nb_classes))

    # Seed random number generator so tutorial is reproducible
    rng = np.random.RandomState([2017, 8, 30])

    # Simulate the black-box model locally
    # You could replace this by a remote labeling API for instance
    print("Preparing the black-box model.")
    prep_bbox_out = prep_bbox(sess, x, y, x_train, y_train, x_test, y_test,
                              nb_epochs, batch_size, learning_rate,
                              rng, nb_classes, img_rows, img_cols, nchannels)
    model, bbox_preds, accuracies['bbox'] = prep_bbox_out

    # Train substitute using method from https://arxiv.org/abs/1602.02697
    print("Training the substitute model.")
    train_sub_out = train_sub(sess, x, y, bbox_preds, x_sub, y_sub,
                              nb_classes, nb_epochs_s, batch_size,
                              learning_rate, data_aug, lmbda, aug_batch_size,
                              rng, img_rows, img_cols, nchannels)
    model_sub, preds_sub = train_sub_out

    # Evaluate the substitute model on clean test examples
    eval_params = {'batch_size': batch_size}
    acc = model_eval(sess, x, y, preds_sub, x_test, y_test, args=eval_params)
    accuracies['sub'] = acc

    # Initialize the Fast Gradient Sign Method (FGSM) attack object.
    fgsm_par = {'eps': 0.3, 'ord': np.inf, 'clip_min': 0., 'clip_max': 1.}
    fgsm = FastGradientMethod(model_sub, sess=sess)

    # Craft adversarial examples using the substitute
    eval_params = {'batch_size': batch_size}
    x_adv_sub = fgsm.generate(x, **fgsm_par)

    # Evaluate the accuracy of the "black-box" model on adversarial examples
    accuracy = model_eval(sess, x, y, model.get_logits(x_adv_sub),
                          x_test, y_test, args=eval_params)
    print('Test accuracy of oracle on adversarial examples generated '
          'using the substitute: ' + str(accuracy))
    accuracies['bbox_on_sub_adv_ex'] = accuracy

    return accuracies

def main(argv=None):
    mnist_blackbox(nb_classes=FLAGS.nb_classes, batch_size=FLAGS.batch_size,
                   nb_epochs=FLAGS.nb_epochs, holdout=FLAGS.holdout,
                   data_aug=FLAGS.data_aug, nb_epochs_s=FLAGS.nb_epochs_s,
                   lmbda=FLAGS.lmbda, aug_batch_size=FLAGS.data_aug_batch_size)

if __name__ == '__main__':
    # General flags
    flags.DEFINE_integer('nb_classes', NB_CLASSES,
                         'Number of classes in problem')
    flags.DEFINE_integer('batch_size', BATCH_SIZE,
                         'Size of training batches')
    flags.DEFINE_float('learning_rate', LEARNING_RATE,
                       'Learning rate for training')

    # Flags related to oracle
    flags.DEFINE_integer('nb_epochs', NB_EPOCHS,
                         'Number of epochs to train model')

    # Flags related to substitute
    flags.DEFINE_integer('holdout', HOLDOUT,
                         'Test set holdout for adversary')
    flags.DEFINE_integer('data_aug', DATA_AUG,
                         'Number of substitute data augmentations')
    flags.DEFINE_integer('nb_epochs_s', NB_EPOCHS_S,
                         'Training epochs for substitute')
    flags.DEFINE_float('lmbda', LMBDA, 'Lambda from arxiv.org/abs/1602.02697')
    flags.DEFINE_integer('data_aug_batch_size', AUG_BATCH_SIZE,
                         'Batch size for augmentation')