# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import json
import random
import re

import modeling
import six
import tensorflow as tf


class BertModelTest(tf.test.TestCase):
    class BertModelTester(object):

        def __init__(self,
                     parent,
                     batch_size=13,
                     seq_length=7,
                     is_training=True,
                     use_input_mask=True,
                     use_token_type_ids=True,
                     vocab_size=99,
                     hidden_size=32,
                     num_hidden_layers=5,
                     num_attention_heads=4,
                     intermediate_size=37,
                     hidden_act="gelu",
                     hidden_dropout_prob=0.1,
                     attention_probs_dropout_prob=0.1,
                     max_position_embeddings=512,
                     type_vocab_size=16,
                     initializer_range=0.02,
                     scope=None):
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.initializer_range = initializer_range
            self.scope = scope

        def create_model(self):
            input_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length],
                                                 self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = BertModelTest.ids_tensor(
                    [self.batch_size, self.seq_length], vocab_size=2)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = BertModelTest.ids_tensor(
                    [self.batch_size, self.seq_length], self.type_vocab_size)

            config = modeling.BertConfig(
                vocab_size=self.vocab_size,
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
                initializer_range=self.initializer_range)

            model = modeling.BertModel(
                config=config,
                is_training=self.is_training,
                input_ids=input_ids,
                input_mask=input_mask,
                token_type_ids=token_type_ids,
                scope=self.scope)

            outputs = {
                "embedding_output": model.get_embedding_output(),
                "sequence_output": model.get_sequence_output(),
                "pooled_output": model.get_pooled_output(),
                "all_encoder_layers": model.get_all_encoder_layers(),
            }
            return outputs

        def check_output(self, result):
            self.parent.assertAllEqual(
                result["embedding_output"].shape,
                [self.batch_size, self.seq_length, self.hidden_size])

            self.parent.assertAllEqual(
                result["sequence_output"].shape,
                [self.batch_size, self.seq_length, self.hidden_size])

            self.parent.assertAllEqual(result["pooled_output"].shape,
                                       [self.batch_size, self.hidden_size])

    def test_default(self):
        self.run_tester(BertModelTest.BertModelTester(self))

    def test_config_to_json_string(self):
        config = modeling.BertConfig(vocab_size=99, hidden_size=37)
        obj = json.loads(config.to_json_string())
        self.assertEqual(obj["vocab_size"], 99)
        self.assertEqual(obj["hidden_size"], 37)

    def run_tester(self, tester):
        with self.test_session() as sess:
            ops = tester.create_model()
            init_op = tf.group(tf.global_variables_initializer(),
                               tf.local_variables_initializer())
            sess.run(init_op)
            output_result = sess.run(ops)
            tester.check_output(output_result)

            self.assert_all_tensors_reachable(sess, [init_op, ops])

    @classmethod
    def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
        """Creates a random int32 tensor of the shape within the vocab size."""
        if rng is None:
            rng = random.Random()

        total_dims = 1
        for dim in shape:
            total_dims *= dim

        values = []
        for _ in range(total_dims):
            values.append(rng.randint(0, vocab_size - 1))

        return tf.constant(value=values, dtype=tf.int32, shape=shape, name=name)

    def assert_all_tensors_reachable(self, sess, outputs):
        """Checks that all the tensors in the graph are reachable from outputs."""
        graph = sess.graph

        ignore_strings = [
            "^.*/dilation_rate$",
            "^.*/Tensordot/concat$",
            "^.*/Tensordot/concat/axis$",
            "^testing/.*$",
        ]

        ignore_regexes = [re.compile(x) for x in ignore_strings]

        unreachable = self.get_unreachable_ops(graph, outputs)
        filtered_unreachable = []
        for x in unreachable:
            do_ignore = False
            for r in ignore_regexes:
                m = r.match(x.name)
                if m is not None:
                    do_ignore = True
            if do_ignore:
                continue
            filtered_unreachable.append(x)
        unreachable = filtered_unreachable

        self.assertEqual(
            len(unreachable), 0, "The following ops are unreachable: %s" %
                                 (" ".join([x.name for x in unreachable])))

    @classmethod
    def get_unreachable_ops(cls, graph, outputs):
        """Finds all of the tensors in graph that are unreachable from outputs."""
        outputs = cls.flatten_recursive(outputs)
        output_to_op = collections.defaultdict(list)
        op_to_all = collections.defaultdict(list)
        assign_out_to_in = collections.defaultdict(list)

        for op in graph.get_operations():
            for x in op.inputs:
                op_to_all[op.name].append(x.name)
            for y in op.outputs:
                output_to_op[y.name].append(op.name)
                op_to_all[op.name].append(y.name)
            if str(op.type) == "Assign":
                for y in op.outputs:
                    for x in op.inputs:
                        assign_out_to_in[y.name].append(x.name)

        assign_groups = collections.defaultdict(list)
        for out_name in assign_out_to_in.keys():
            name_group = assign_out_to_in[out_name]
            for n1 in name_group:
                assign_groups[n1].append(out_name)
                for n2 in name_group:
                    if n1 != n2:
                        assign_groups[n1].append(n2)

        seen_tensors = {}
        stack = [x.name for x in outputs]
        while stack:
            name = stack.pop()
            if name in seen_tensors:
                continue
            seen_tensors[name] = True

            if name in output_to_op:
                for op_name in output_to_op[name]:
                    if op_name in op_to_all:
                        for input_name in op_to_all[op_name]:
                            if input_name not in stack:
                                stack.append(input_name)

            expanded_names = []
            if name in assign_groups:
                for assign_name in assign_groups[name]:
                    expanded_names.append(assign_name)

            for expanded_name in expanded_names:
                if expanded_name not in stack:
                    stack.append(expanded_name)

        unreachable_ops = []
        for op in graph.get_operations():
            is_unreachable = False
            all_names = [x.name for x in op.inputs] + [x.name for x in op.outputs]
            for name in all_names:
                if name not in seen_tensors:
                    is_unreachable = True
            if is_unreachable:
                unreachable_ops.append(op)
        return unreachable_ops

    @classmethod
    def flatten_recursive(cls, item):
        """Flattens (potentially nested) a tuple/dictionary/list to a list."""
        output = []
        if isinstance(item, list):
            output.extend(item)
        elif isinstance(item, tuple):
            output.extend(list(item))
        elif isinstance(item, dict):
            for (_, v) in six.iteritems(item):
                output.append(v)
        else:
            return [item]

        flat_output = []
        for x in output:
            flat_output.extend(cls.flatten_recursive(x))
        return flat_output


if __name__ == "__main__":
    tf.test.main()