from sklearn.calibration import CalibratedClassifierCV as Op import lale.helpers import lale.operators import lale.docstrings from numpy import nan, inf class CalibratedClassifierCVImpl(): def __init__(self, base_estimator=None, method='sigmoid', cv=3): self._hyperparams = { 'base_estimator': base_estimator, 'method': method, 'cv': cv} self._wrapped_model = Op(**self._hyperparams) def fit(self, X, y=None): if (y is not None): self._wrapped_model.fit(X, y) else: self._wrapped_model.fit(X) return self def predict(self, X): return self._wrapped_model.predict(X) def predict_proba(self, X): return self._wrapped_model.predict_proba(X) _hyperparams_schema = { '$schema': 'http://json-schema.org/draft-04/schema#', 'description': 'inherited docstring for CalibratedClassifierCV Probability calibration with isotonic regression or sigmoid.', 'allOf': [{ 'type': 'object', 'required': ['base_estimator', 'method', 'cv'], 'relevantToOptimizer': ['method', 'cv'], 'additionalProperties': False, 'properties': { 'base_estimator': { 'XXX TODO XXX': 'instance BaseEstimator', 'description': 'The classifier whose output decision function needs to be calibrated to offer more accurate predict_proba outputs', 'enum': [None], 'default': None}, 'method': { 'XXX TODO XXX': "'sigmoid' or 'isotonic'", 'description': 'The method to use for calibration', 'enum': ['isotonic', 'sigmoid'], 'default': 'sigmoid'}, 'cv': { 'XXX TODO XXX': 'integer, cross-validation generator, iterable or "prefit", optional', 'description': 'Determines the cross-validation splitting strategy', 'type': 'integer', 'minimumForOptimizer': 3, 'maximumForOptimizer': 4, 'distribution': 'uniform', 'default': 3}, }}], } _input_fit_schema = { '$schema': 'http://json-schema.org/draft-04/schema#', 'description': 'Fit the calibrated model', 'type': 'object', 'required': ['X', 'y'], 'properties': { 'X': { 'type': 'array', 'items': { 'type': 'array', 'items': { 'type': 'number'}, }, 'description': 'Training data.'}, 'y': { 'type': 'array', 'items': { 'type': 'number'}, 'description': 'Target values.'}, 'sample_weight': { 'anyOf': [{ 'type': 'array', 'items': { 'type': 'number'}, }, { 'enum': [None]}], 'description': 'Sample weights'}, }, } _input_predict_schema = { '$schema': 'http://json-schema.org/draft-04/schema#', 'description': 'Predict the target of new samples. Can be different from the', 'type': 'object', 'required': ['X'], 'properties': { 'X': { 'type': 'array', 'items': { 'type': 'array', 'items': { 'type': 'number'}, }, 'description': 'The samples.'}, }, } _output_predict_schema = { '$schema': 'http://json-schema.org/draft-04/schema#', 'description': 'The predicted class.', 'type': 'array', 'items': { 'type': 'number'}, } _input_predict_proba_schema = { '$schema': 'http://json-schema.org/draft-04/schema#', 'description': 'Posterior probabilities of classification', 'type': 'object', 'required': ['X'], 'properties': { 'X': { 'type': 'array', 'items': { 'type': 'array', 'items': { 'type': 'number'}, }, 'description': 'The samples.'}, }, } _output_predict_proba_schema = { '$schema': 'http://json-schema.org/draft-04/schema#', 'description': 'The predicted probas.', 'type': 'array', 'items': { 'type': 'array', 'items': { 'type': 'number'}, }, } _combined_schemas = { '$schema': 'http://json-schema.org/draft-04/schema#', 'description': 'Combined schema for expected data and hyperparameters.', 'documentation_url': 'https://scikit-learn.org/0.20/modules/generated/sklearn.calibration.CalibratedClassifierCV#sklearn-calibration-calibratedclassifiercv', 'type': 'object', 'tags': { 'pre': [], 'op': ['estimator'], 'post': []}, 'properties': { 'hyperparams': _hyperparams_schema, 'input_fit': _input_fit_schema, 'input_predict': _input_predict_schema, 'output_predict': _output_predict_schema, 'input_predict_proba': _input_predict_proba_schema, 'output_predict_proba': _output_predict_proba_schema}, } lale.docstrings.set_docstrings(CalibratedClassifierCVImpl, _combined_schemas) CalibratedClassifierCV = lale.operators.make_operator(CalibratedClassifierCVImpl, _combined_schemas)