from sklearn.calibration import CalibratedClassifierCV as Op
import lale.helpers
import lale.operators
import lale.docstrings
from numpy import nan, inf

class CalibratedClassifierCVImpl():

    def __init__(self, base_estimator=None, method='sigmoid', cv=3):
        self._hyperparams = {
            'base_estimator': base_estimator,
            'method': method,
            'cv': cv}
        self._wrapped_model = Op(**self._hyperparams)

    def fit(self, X, y=None):
        if (y is not None):
            self._wrapped_model.fit(X, y)
        else:
            self._wrapped_model.fit(X)
        return self

    def predict(self, X):
        return self._wrapped_model.predict(X)

    def predict_proba(self, X):
        return self._wrapped_model.predict_proba(X)
_hyperparams_schema = {
    '$schema': 'http://json-schema.org/draft-04/schema#',
    'description': 'inherited docstring for CalibratedClassifierCV    Probability calibration with isotonic regression or sigmoid.',
    'allOf': [{
        'type': 'object',
        'required': ['base_estimator', 'method', 'cv'],
        'relevantToOptimizer': ['method', 'cv'],
        'additionalProperties': False,
        'properties': {
            'base_estimator': {
                'XXX TODO XXX': 'instance BaseEstimator',
                'description': 'The classifier whose output decision function needs to be calibrated to offer more accurate predict_proba outputs',
                'enum': [None],
                'default': None},
            'method': {
                'XXX TODO XXX': "'sigmoid' or 'isotonic'",
                'description': 'The method to use for calibration',
                'enum': ['isotonic', 'sigmoid'],
                'default': 'sigmoid'},
            'cv': {
                'XXX TODO XXX': 'integer, cross-validation generator, iterable or "prefit", optional',
                'description': 'Determines the cross-validation splitting strategy',
                'type': 'integer',
                'minimumForOptimizer': 3,
                'maximumForOptimizer': 4,
                'distribution': 'uniform',
                'default': 3},
        }}],
}
_input_fit_schema = {
    '$schema': 'http://json-schema.org/draft-04/schema#',
    'description': 'Fit the calibrated model',
    'type': 'object',
    'required': ['X', 'y'],
    'properties': {
        'X': {
            'type': 'array',
            'items': {
                'type': 'array',
                'items': {
                    'type': 'number'},
            },
            'description': 'Training data.'},
        'y': {
            'type': 'array',
            'items': {
                'type': 'number'},
            'description': 'Target values.'},
        'sample_weight': {
            'anyOf': [{
                'type': 'array',
                'items': {
                    'type': 'number'},
            }, {
                'enum': [None]}],
            'description': 'Sample weights'},
    },
}
_input_predict_schema = {
    '$schema': 'http://json-schema.org/draft-04/schema#',
    'description': 'Predict the target of new samples. Can be different from the',
    'type': 'object',
    'required': ['X'],
    'properties': {
        'X': {
            'type': 'array',
            'items': {
                'type': 'array',
                'items': {
                    'type': 'number'},
            },
            'description': 'The samples.'},
    },
}
_output_predict_schema = {
    '$schema': 'http://json-schema.org/draft-04/schema#',
    'description': 'The predicted class.',
    'type': 'array',
    'items': {
        'type': 'number'},
}
_input_predict_proba_schema = {
    '$schema': 'http://json-schema.org/draft-04/schema#',
    'description': 'Posterior probabilities of classification',
    'type': 'object',
    'required': ['X'],
    'properties': {
        'X': {
            'type': 'array',
            'items': {
                'type': 'array',
                'items': {
                    'type': 'number'},
            },
            'description': 'The samples.'},
    },
}
_output_predict_proba_schema = {
    '$schema': 'http://json-schema.org/draft-04/schema#',
    'description': 'The predicted probas.',
    'type': 'array',
    'items': {
        'type': 'array',
        'items': {
            'type': 'number'},
    },
}
_combined_schemas = {
    '$schema': 'http://json-schema.org/draft-04/schema#',
    'description': 'Combined schema for expected data and hyperparameters.',
    'documentation_url': 'https://scikit-learn.org/0.20/modules/generated/sklearn.calibration.CalibratedClassifierCV#sklearn-calibration-calibratedclassifiercv',
    'type': 'object',
    'tags': {
        'pre': [],
        'op': ['estimator'],
        'post': []},
    'properties': {
        'hyperparams': _hyperparams_schema,
        'input_fit': _input_fit_schema,
        'input_predict': _input_predict_schema,
        'output_predict': _output_predict_schema,
        'input_predict_proba': _input_predict_proba_schema,
        'output_predict_proba': _output_predict_proba_schema},
}
lale.docstrings.set_docstrings(CalibratedClassifierCVImpl, _combined_schemas)
CalibratedClassifierCV = lale.operators.make_operator(CalibratedClassifierCVImpl, _combined_schemas)