Java Code Examples for weka.core.neighboursearch.LinearNNSearch

The following are top voted examples for showing how to use weka.core.neighboursearch.LinearNNSearch. These examples are extracted from open source projects. You can vote up the examples you like and your votes will be used in our system to generate more good examples.
Example 1
Project: autoweka   File: LOF.java   Source Code and License 5 votes vote down vote up
/**
 * Parses a given list of options.
 * <p/>
 * 
 <!-- options-start -->
 * Valid options are: <p/>
 * 
 * <pre> -min &lt;num&gt;
 *  Lower bound on the k nearest neighbors for finding max LOF (minPtsLB)
 *  (default = 10)</pre>
 * 
 * <pre> -max &lt;num&gt;
 *  Upper bound on the k nearest neighbors for finding max LOF (minPtsUB)
 *  (default = 40)</pre>
 * 
 * <pre> -A
 *  The nearest neighbour search algorithm to use (default: weka.core.neighboursearch.LinearNNSearch).
 * </pre>
 * 
 * <pre> -num-slots &lt;num&gt;
 *  Number of execution slots.
 *  (default 1 - i.e. no parallelism)</pre>
 * 
 <!-- options-end -->
 * 
 * @param options the list of options as an array of strings
 * @throws Exception if an option is not supported
 */
@Override
public void setOptions(String[] options) throws Exception {
  String minP = Utils.getOption("min", options);
  if (minP.length() > 0) {
    setMinPointsLowerBound(minP);
  }

  String maxP = Utils.getOption("max", options);
  if (maxP.length() > 0) {
    setMinPointsUpperBound(maxP);
  }

  String nnSearchClass = Utils.getOption('A', options);
  if (nnSearchClass.length() != 0) {
    String nnSearchClassSpec[] = Utils.splitOptions(nnSearchClass);
    if (nnSearchClassSpec.length == 0) {
      throw new Exception("Invalid NearestNeighbourSearch algorithm "
          + "specification string.");
    }
    String className = nnSearchClassSpec[0];
    nnSearchClassSpec[0] = "";

    setNNSearch((NearestNeighbourSearch) Utils.forName(
        NearestNeighbourSearch.class, className, nnSearchClassSpec));
  } else {
    this.setNNSearch(new LinearNNSearch());
  }

  String slotsS = Utils.getOption("num-slots", options);
  if (slotsS.length() > 0) {
    setNumExecutionSlots(slotsS);
  }

  Utils.checkForRemainingOptions(options);
}
 
Example 2
Project: repo.kmeanspp.silhouette_score   File: LWL.java   Source Code and License 3 votes vote down vote up
/**
 * Parses a given list of options. <p/>
 *
 <!-- options-start -->
 * Valid options are: <p/>
 * 
 * <pre> -A
 *  The nearest neighbour search algorithm to use (default: weka.core.neighboursearch.LinearNNSearch).
 * </pre>
 * 
 * <pre> -K &lt;number of neighbours&gt;
 *  Set the number of neighbours used to set the kernel bandwidth.
 *  (default all)</pre>
 * 
 * <pre> -U &lt;number of weighting method&gt;
 *  Set the weighting kernel shape to use. 0=Linear, 1=Epanechnikov,
 *  2=Tricube, 3=Inverse, 4=Gaussian.
 *  (default 0 = Linear)</pre>
 * 
 * <pre> -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console</pre>
 * 
 * <pre> -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.trees.DecisionStump)</pre>
 * 
 * <pre> 
 * Options specific to classifier weka.classifiers.trees.DecisionStump:
 * </pre>
 * 
 * <pre> -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console</pre>
 * 
 <!-- options-end -->
 *
 * @param options the list of options as an array of strings
 * @throws Exception if an option is not supported
 */
public void setOptions(String[] options) throws Exception {

  String knnString = Utils.getOption('K', options);
  if (knnString.length() != 0) {
    setKNN(Integer.parseInt(knnString));
  } else {
    setKNN(-1);
  }

  String weightString = Utils.getOption('U', options);
  if (weightString.length() != 0) {
    setWeightingKernel(Integer.parseInt(weightString));
  } else {
    setWeightingKernel(LINEAR);
  }
  
  String nnSearchClass = Utils.getOption('A', options);
  if(nnSearchClass.length() != 0) {
    String nnSearchClassSpec[] = Utils.splitOptions(nnSearchClass);
    if(nnSearchClassSpec.length == 0) { 
      throw new Exception("Invalid NearestNeighbourSearch algorithm " +
                          "specification string."); 
    }
    String className = nnSearchClassSpec[0];
    nnSearchClassSpec[0] = "";

    setNearestNeighbourSearchAlgorithm( (NearestNeighbourSearch)
                Utils.forName( NearestNeighbourSearch.class, 
                               className, 
                               nnSearchClassSpec)
                                      );
  }
  else 
    this.setNearestNeighbourSearchAlgorithm(new LinearNNSearch());

  super.setOptions(options);
}
 
Example 3
Project: autoweka   File: LOF.java   Source Code and License 3 votes vote down vote up
/**
 * Parses a given list of options.
 * <p/>
 * 
 <!-- options-start --> 
 * Valid options are:
 * <p/>
 * 
 * <pre>
 * -min &lt;num&gt;
 *  Lower bound on the k nearest neighbors for finding max LOF (minPtsLB)
 *  (default = 10)
 * </pre>
 * 
 * <pre>
 * -max &lt;num&gt;
 *  Upper bound on the k nearest neighbors for finding max LOF (minPtsUB)
 *  (default = 40)
 * </pre>
 * 
 * <pre>
 * -A
 *  The nearest neighbour search algorithm to use (default: weka.core.neighboursearch.LinearNNSearch).
 * </pre>
 * 
 * <pre>
 * -num-slots &lt;num&gt;
 *  Number of execution slots.
 *  (default 1 - i.e. no parallelism)
 * </pre>
 * 
 <!-- options-end -->
 * 
 * @param options the list of options as an array of strings
 * @throws Exception if an option is not supported
 */
@Override
public void setOptions(String[] options) throws Exception {
  String minP = Utils.getOption("min", options);
  if (minP.length() > 0) {
    setMinPointsLowerBound(minP);
  }

  String maxP = Utils.getOption("max", options);
  if (maxP.length() > 0) {
    setMinPointsUpperBound(maxP);
  }

  String nnSearchClass = Utils.getOption('A', options);
  if (nnSearchClass.length() != 0) {
    String nnSearchClassSpec[] = Utils.splitOptions(nnSearchClass);
    if (nnSearchClassSpec.length == 0) {
      throw new Exception("Invalid NearestNeighbourSearch algorithm "
          + "specification string.");
    }
    String className = nnSearchClassSpec[0];
    nnSearchClassSpec[0] = "";

    setNNSearch((NearestNeighbourSearch) Utils.forName(
        NearestNeighbourSearch.class, className, nnSearchClassSpec));
  } else {
    this.setNNSearch(new LinearNNSearch());
  }

  String slotsS = Utils.getOption("num-slots", options);
  if (slotsS.length() > 0) {
    setNumExecutionSlots(slotsS);
  }

  Utils.checkForRemainingOptions(options);
}
 
Example 4
Project: autoweka   File: LWL.java   Source Code and License 3 votes vote down vote up
/**
 * Parses a given list of options. <p/>
 *
 <!-- options-start -->
 * Valid options are: <p/>
 * 
 * <pre> -A
 *  The nearest neighbour search algorithm to use (default: weka.core.neighboursearch.LinearNNSearch).
 * </pre>
 * 
 * <pre> -K &lt;number of neighbours&gt;
 *  Set the number of neighbours used to set the kernel bandwidth.
 *  (default all)</pre>
 * 
 * <pre> -U &lt;number of weighting method&gt;
 *  Set the weighting kernel shape to use. 0=Linear, 1=Epanechnikov,
 *  2=Tricube, 3=Inverse, 4=Gaussian.
 *  (default 0 = Linear)</pre>
 * 
 * <pre> -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console</pre>
 * 
 * <pre> -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.trees.DecisionStump)</pre>
 * 
 * <pre> 
 * Options specific to classifier weka.classifiers.trees.DecisionStump:
 * </pre>
 * 
 * <pre> -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console</pre>
 * 
 <!-- options-end -->
 *
 * @param options the list of options as an array of strings
 * @throws Exception if an option is not supported
 */
public void setOptions(String[] options) throws Exception {

  String knnString = Utils.getOption('K', options);
  if (knnString.length() != 0) {
    setKNN(Integer.parseInt(knnString));
  } else {
    setKNN(-1);
  }

  String weightString = Utils.getOption('U', options);
  if (weightString.length() != 0) {
    setWeightingKernel(Integer.parseInt(weightString));
  } else {
    setWeightingKernel(LINEAR);
  }
  
  String nnSearchClass = Utils.getOption('A', options);
  if(nnSearchClass.length() != 0) {
    String nnSearchClassSpec[] = Utils.splitOptions(nnSearchClass);
    if(nnSearchClassSpec.length == 0) { 
      throw new Exception("Invalid NearestNeighbourSearch algorithm " +
                          "specification string."); 
    }
    String className = nnSearchClassSpec[0];
    nnSearchClassSpec[0] = "";

    setNearestNeighbourSearchAlgorithm( (NearestNeighbourSearch)
                Utils.forName( NearestNeighbourSearch.class, 
                               className, 
                               nnSearchClassSpec)
                                      );
  }
  else 
    this.setNearestNeighbourSearchAlgorithm(new LinearNNSearch());

  super.setOptions(options);
}
 
Example 5
Project: umple   File: LWL.java   Source Code and License 3 votes vote down vote up
/**
 * Parses a given list of options. <p/>
 *
 <!-- options-start -->
 * Valid options are: <p/>
 * 
 * <pre> -A
 *  The nearest neighbour search algorithm to use (default: weka.core.neighboursearch.LinearNNSearch).
 * </pre>
 * 
 * <pre> -K &lt;number of neighbours&gt;
 *  Set the number of neighbours used to set the kernel bandwidth.
 *  (default all)</pre>
 * 
 * <pre> -U &lt;number of weighting method&gt;
 *  Set the weighting kernel shape to use. 0=Linear, 1=Epanechnikov,
 *  2=Tricube, 3=Inverse, 4=Gaussian.
 *  (default 0 = Linear)</pre>
 * 
 * <pre> -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console</pre>
 * 
 * <pre> -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.trees.DecisionStump)</pre>
 * 
 * <pre> 
 * Options specific to classifier weka.classifiers.trees.DecisionStump:
 * </pre>
 * 
 * <pre> -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console</pre>
 * 
 <!-- options-end -->
 *
 * @param options the list of options as an array of strings
 * @throws Exception if an option is not supported
 */
public void setOptions(String[] options) throws Exception {

  String knnString = Utils.getOption('K', options);
  if (knnString.length() != 0) {
    setKNN(Integer.parseInt(knnString));
  } else {
    setKNN(-1);
  }

  String weightString = Utils.getOption('U', options);
  if (weightString.length() != 0) {
    setWeightingKernel(Integer.parseInt(weightString));
  } else {
    setWeightingKernel(LINEAR);
  }
  
  String nnSearchClass = Utils.getOption('A', options);
  if(nnSearchClass.length() != 0) {
    String nnSearchClassSpec[] = Utils.splitOptions(nnSearchClass);
    if(nnSearchClassSpec.length == 0) { 
      throw new Exception("Invalid NearestNeighbourSearch algorithm " +
                          "specification string."); 
    }
    String className = nnSearchClassSpec[0];
    nnSearchClassSpec[0] = "";

    setNearestNeighbourSearchAlgorithm( (NearestNeighbourSearch)
                Utils.forName( NearestNeighbourSearch.class, 
                               className, 
                               nnSearchClassSpec)
                                      );
  }
  else 
    this.setNearestNeighbourSearchAlgorithm(new LinearNNSearch());

  super.setOptions(options);
}
 
Example 6
Project: jbossBA   File: LWL.java   Source Code and License 3 votes vote down vote up
/**
 * Parses a given list of options. <p/>
 *
 <!-- options-start -->
 * Valid options are: <p/>
 * 
 * <pre> -A
 *  The nearest neighbour search algorithm to use (default: weka.core.neighboursearch.LinearNNSearch).
 * </pre>
 * 
 * <pre> -K &lt;number of neighbours&gt;
 *  Set the number of neighbours used to set the kernel bandwidth.
 *  (default all)</pre>
 * 
 * <pre> -U &lt;number of weighting method&gt;
 *  Set the weighting kernel shape to use. 0=Linear, 1=Epanechnikov,
 *  2=Tricube, 3=Inverse, 4=Gaussian.
 *  (default 0 = Linear)</pre>
 * 
 * <pre> -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console</pre>
 * 
 * <pre> -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.trees.DecisionStump)</pre>
 * 
 * <pre> 
 * Options specific to classifier weka.classifiers.trees.DecisionStump:
 * </pre>
 * 
 * <pre> -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console</pre>
 * 
 <!-- options-end -->
 *
 * @param options the list of options as an array of strings
 * @throws Exception if an option is not supported
 */
public void setOptions(String[] options) throws Exception {

  String knnString = Utils.getOption('K', options);
  if (knnString.length() != 0) {
    setKNN(Integer.parseInt(knnString));
  } else {
    setKNN(-1);
  }

  String weightString = Utils.getOption('U', options);
  if (weightString.length() != 0) {
    setWeightingKernel(Integer.parseInt(weightString));
  } else {
    setWeightingKernel(LINEAR);
  }
  
  String nnSearchClass = Utils.getOption('A', options);
  if(nnSearchClass.length() != 0) {
    String nnSearchClassSpec[] = Utils.splitOptions(nnSearchClass);
    if(nnSearchClassSpec.length == 0) { 
      throw new Exception("Invalid NearestNeighbourSearch algorithm " +
                          "specification string."); 
    }
    String className = nnSearchClassSpec[0];
    nnSearchClassSpec[0] = "";

    setNearestNeighbourSearchAlgorithm( (NearestNeighbourSearch)
                Utils.forName( NearestNeighbourSearch.class, 
                               className, 
                               nnSearchClassSpec)
                                      );
  }
  else 
    this.setNearestNeighbourSearchAlgorithm(new LinearNNSearch());

  super.setOptions(options);
}
 
Example 7
Project: missing-values-imputation-weka-package   File: SimpleNearestNeighbor.java   Source Code and License 2 votes vote down vote up
/**
 * Returns the default nearest neighbor search to use.
 *
 * @return		the default
 */
protected NearestNeighbourSearch getDefaultSearch() {
  return new LinearNNSearch();
}