org.apache.spark.sql.Dataset Java Examples

The following examples show how to use org.apache.spark.sql.Dataset. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: SparkDataSet.java    From spliceengine with GNU Affero General Public License v3.0 7 votes vote down vote up
@SuppressWarnings({ "unchecked", "rawtypes" })
@Override
public DataSet< V> intersect(DataSet< V> dataSet, String name, OperationContext context, boolean pushScope, String scopeDetail) throws StandardException {
    pushScopeIfNeeded(context, pushScope, scopeDetail);
    try {
        //Convert this rdd backed iterator to a Spark untyped dataset
        Dataset<Row> left = SpliceSpark.getSession()
                .createDataFrame(
                    rdd.map(
                        new LocatedRowToRowFunction()),
                    context.getOperation()
                           .getExecRowDefinition()
                           .schema());

        return new NativeSparkDataSet(left, context).intersect(dataSet, name, context, pushScope, scopeDetail);
    }finally {
        if (pushScope) context.popScope();
    }
}
 
Example #2
Source File: TestImpalaMetadataTask.java    From envelope with Apache License 2.0 6 votes vote down vote up
@Test
public void testDeriveDropRangePartitionBoundariesQuery() {
  Map<String, Object> configMap = new HashMap<>();
  configMap.put(HOST_CONFIG, "testhost");
  configMap.put(QUERY_TYPE_CONFIG, "drop_partition");
  configMap.put(QUERY_TABLE_CONFIG, "testtable");
  configMap.put(QUERY_PART_RANGE_START_CONFIG, "20190122");
  configMap.put(QUERY_PART_RANGE_END_CONFIG, "20190123");
  configMap.put(AUTH_CONFIG, "none");
  Config config = ConfigFactory.parseMap(configMap);
  ImpalaMetadataTask metadataTask = new ImpalaMetadataTask();
  metadataTask.configure(config);

  Map<String, Dataset<Row>> dependencies = Maps.newHashMap();
  String query = metadataTask.deriveQuery(dependencies);

  assertEquals("ALTER TABLE testtable DROP IF EXISTS RANGE PARTITION 20190122 <= VALUES < 20190123", query);
}
 
Example #3
Source File: TestInListDeriver.java    From envelope with Apache License 2.0 6 votes vote down vote up
@Test
public void testWrongField() throws Exception {
  thrown.expect(RuntimeException.class);
  thrown.expectMessage("Error executing IN list filtering");

  Dataset<Row> source = createTestDataframe();
  List<String> inListLiteral = Arrays.asList("1", "2", "3");

  Map<String, Dataset<Row>> dependencies = new HashMap<>();
  dependencies.put("df1", source);

  Config config = ConfigFactory.empty()
      .withValue(InListDeriver.INLIST_STEP_CONFIG, ConfigValueFactory.fromAnyRef("df1"))
      .withValue(InListDeriver.INLIST_FIELD_CONFIG, ConfigValueFactory.fromAnyRef("non_existing_field"))
      .withValue(InListDeriver.INLIST_VALUES_CONFIG, ConfigValueFactory.fromIterable(inListLiteral));

  InListDeriver deriver = new InListDeriver();

  assertNoValidationFailures(deriver, config);
  deriver.configure(config);

  deriver.derive(dependencies);
}
 
Example #4
Source File: TestTranslateFunction.java    From envelope with Apache License 2.0 6 votes vote down vote up
@Test
public void testExplicitDontAppendRaw() {
  Map<String, Object> configMap = Maps.newHashMap();
  configMap.put(ComponentFactory.TYPE_CONFIG_NAME, DummyTranslator.class.getName());
  configMap.put(TranslateFunction.APPEND_RAW_ENABLED_CONFIG, false);
  Config config = ConfigFactory.parseMap(configMap);

  TranslateFunction tf = new TranslateFunction(config);
  tf.receiveProvidedSchema(tf.getExpectingSchema());
  Dataset<Row> raw = Contexts.getSparkSession().createDataFrame(
      Lists.newArrayList(RowFactory.create("hello?")), tf.getExpectingSchema());
  Dataset<Row> translated = raw.flatMap(tf, RowEncoder.apply(tf.getProvidingSchema()));

  assertEquals(1, translated.schema().size());
  assertNotEquals("_value", translated.schema().fields()[0].name());
}
 
Example #5
Source File: MLContextTest.java    From systemds with Apache License 2.0 6 votes vote down vote up
@Test
public void testDataFrameSumDMLMllibVectorWithIDColumn() {
	System.out.println("MLContextTest - DataFrame sum DML, mllib vector with ID column");

	List<Tuple2<Double, org.apache.spark.mllib.linalg.Vector>> list = new ArrayList<>();
	list.add(new Tuple2<>(1.0, org.apache.spark.mllib.linalg.Vectors.dense(1.0, 2.0, 3.0)));
	list.add(new Tuple2<>(2.0, org.apache.spark.mllib.linalg.Vectors.dense(4.0, 5.0, 6.0)));
	list.add(new Tuple2<>(3.0, org.apache.spark.mllib.linalg.Vectors.dense(7.0, 8.0, 9.0)));
	JavaRDD<Tuple2<Double, org.apache.spark.mllib.linalg.Vector>> javaRddTuple = sc.parallelize(list);

	JavaRDD<Row> javaRddRow = javaRddTuple.map(new DoubleMllibVectorRow());
	List<StructField> fields = new ArrayList<>();
	fields.add(DataTypes.createStructField(RDDConverterUtils.DF_ID_COLUMN, DataTypes.DoubleType, true));
	fields.add(DataTypes.createStructField("C1", new org.apache.spark.mllib.linalg.VectorUDT(), true));
	StructType schema = DataTypes.createStructType(fields);
	Dataset<Row> dataFrame = spark.createDataFrame(javaRddRow, schema);

	MatrixMetadata mm = new MatrixMetadata(MatrixFormat.DF_VECTOR_WITH_INDEX);

	Script script = dml("print('sum: ' + sum(M));").in("M", dataFrame, mm);
	setExpectedStdOut("sum: 45.0");
	ml.execute(script);
}
 
Example #6
Source File: RewriteManifestsAction.java    From iceberg with Apache License 2.0 6 votes vote down vote up
private List<ManifestFile> writeManifestsForUnpartitionedTable(Dataset<Row> manifestEntryDF, int numManifests) {
  Broadcast<FileIO> io = sparkContext.broadcast(fileIO);
  StructType sparkType = (StructType) manifestEntryDF.schema().apply("data_file").dataType();

  // we rely only on the target number of manifests for unpartitioned tables
  // as we should not worry about having too much metadata per partition
  long maxNumManifestEntries = Long.MAX_VALUE;

  return manifestEntryDF
      .repartition(numManifests)
      .mapPartitions(
          toManifests(io, maxNumManifestEntries, stagingLocation, formatVersion, spec, sparkType),
          manifestEncoder
      )
      .collectAsList();
}
 
Example #7
Source File: ITTestHDFSParquetImportCommand.java    From hudi with Apache License 2.0 6 votes vote down vote up
/**
 * Method to verify result is equals to expect.
 */
private void verifyResultData(List<GenericRecord> expectData) {
  Dataset<Row> ds = HoodieClientTestUtils.read(jsc, tablePath, sqlContext, fs, tablePath + "/*/*/*/*");

  List<Row> readData = ds.select("timestamp", "_row_key", "rider", "driver", "begin_lat", "begin_lon", "end_lat", "end_lon").collectAsList();
  List<HoodieTripModel> result = readData.stream().map(row ->
      new HoodieTripModel(row.getDouble(0), row.getString(1), row.getString(2), row.getString(3), row.getDouble(4),
          row.getDouble(5), row.getDouble(6), row.getDouble(7)))
      .collect(Collectors.toList());

  List<HoodieTripModel> expected = expectData.stream().map(g ->
      new HoodieTripModel(Double.parseDouble(g.get("timestamp").toString()),
          g.get("_row_key").toString(),
          g.get("rider").toString(),
          g.get("driver").toString(),
          Double.parseDouble(g.get("begin_lat").toString()),
          Double.parseDouble(g.get("begin_lon").toString()),
          Double.parseDouble(g.get("end_lat").toString()),
          Double.parseDouble(g.get("end_lon").toString())))
      .collect(Collectors.toList());

  assertAll("Result list equals",
      () -> assertEquals(expected.size(), result.size()),
      () -> assertTrue(result.containsAll(expected) && expected.containsAll(result)));
}
 
Example #8
Source File: MLContextTest.java    From systemds with Apache License 2.0 6 votes vote down vote up
@Test
public void testOutputDataFrameFromMatrixDML() {
	System.out.println("MLContextTest - output DataFrame from matrix DML");

	String s = "M = matrix('1 2 3 4', rows=2, cols=2);";
	Script script = dml(s).out("M");
	Dataset<Row> df = ml.execute(script).getMatrix("M").toDF();
	Dataset<Row> sortedDF = df.sort(RDDConverterUtils.DF_ID_COLUMN);
	List<Row> list = sortedDF.collectAsList();
	Row row1 = list.get(0);
	Assert.assertEquals(1.0, row1.getDouble(0), 0.0);
	Assert.assertEquals(1.0, row1.getDouble(1), 0.0);
	Assert.assertEquals(2.0, row1.getDouble(2), 0.0);

	Row row2 = list.get(1);
	Assert.assertEquals(2.0, row2.getDouble(0), 0.0);
	Assert.assertEquals(3.0, row2.getDouble(1), 0.0);
	Assert.assertEquals(4.0, row2.getDouble(2), 0.0);
}
 
Example #9
Source File: TestPassthroughDeriver.java    From envelope with Apache License 2.0 6 votes vote down vote up
@Test (expected = RuntimeException.class)
public void testDifferentSchemas() throws Exception {
  StructType schema1 = DataTypes.createStructType(Lists.<StructField>newArrayList(
      DataTypes.createStructField("col1", DataTypes.StringType, false)));
  StructType schema2 = DataTypes.createStructType(Lists.<StructField>newArrayList(
      DataTypes.createStructField("col2", DataTypes.StringType, false)));
  Dataset<Row> dep1 = Contexts.getSparkSession().createDataFrame(
      Lists.newArrayList(RowFactory.create("a")), schema1);
  Dataset<Row> dep2= Contexts.getSparkSession().createDataFrame(
      Lists.newArrayList(RowFactory.create("b")), schema2);
  Map<String, Dataset<Row>> dependencies = Maps.newHashMap();
  dependencies.put("dep1", dep1);
  dependencies.put("dep2", dep2);

  Deriver deriver = new PassthroughDeriver();

  deriver.derive(dependencies).collectAsList();
}
 
Example #10
Source File: NExecAndComp.java    From kylin-on-parquet-v2 with Apache License 2.0 6 votes vote down vote up
public static Dataset<Row> sql(String prj, String sqlText, List<String> parameters) {
    if (sqlText == null)
        throw new RuntimeException("Sorry your SQL is null...");

    try {
        logger.info("Try to query from cube....");
        long startTs = System.currentTimeMillis();
        Dataset<Row> dataset = queryCubeAndSkipCompute(prj, sqlText, parameters);
        logger.info("Cool! This sql hits cube...");
        logger.info("Duration(ms): {}", (System.currentTimeMillis() - startTs));
        return dataset;
    } catch (Throwable e) {
        logger.error("There is no cube can be used for query [{}]", sqlText);
        logger.error("Reasons:", e);
        throw new RuntimeException("Error in running query [ " + sqlText.trim() + " ]", e);
    }
}
 
Example #11
Source File: DataFrameIT.java    From spliceengine with GNU Affero General Public License v3.0 6 votes vote down vote up
public static void testResultSetToDF(String table, ResultSet[] resultSets) throws SQLException {

    try{
        Connection conn = DriverManager.getConnection("jdbc:default:connection");
        PreparedStatement pstmt = conn.prepareStatement("select * from " + table.toUpperCase());
        ResultSet res = pstmt.executeQuery();
        // Convert result set to Dataframe
        Dataset<Row> resultSetDF = SparkUtils.resultSetToDF(res);
        resultSets[0] = res;

            // Construct Stored Procedure Result
            List<ExecRow> rows = Lists.newArrayList();
            ExecRow row = new ValueRow(1);
            // System.out.println(resultSetDF.dataset().count());
            row.setColumn(1, new SQLLongint(resultSetDF.count()));
            rows.add(row);
            IteratorNoPutResultSet resultsToWrap = wrapResults((EmbedConnection) conn, rows, DATAFRAME_COUNT_STORED_PROCEDURE_COLUMN_DECSRIPTOR);
            resultSets[0] = new EmbedResultSet40((EmbedConnection)conn, resultsToWrap, false, null, true);

            conn.close();
        }
        catch (StandardException e) {
            throw new SQLException(Throwables.getRootCause(e));
        }
    }
 
Example #12
Source File: CommonAddressFeaturesBridgeTest.java    From spark-transformers with Apache License 2.0 6 votes vote down vote up
private void assertCorrectness(Dataset<Row> rowDataset, Transformer transformer) {
	List<Row> sparkOutput = rowDataset.collectAsList();

	for (Row row : sparkOutput) {
		Map<String, Object> data = new HashMap<>();
		data.put("mergedAddress", row.get(0));

		List<Object> list = row.getList(1);
		String[] sanitizedAddress = new String[list.size()];
		for (int j = 0; j < sanitizedAddress.length; j++) {
			sanitizedAddress[j] = (String) list.get(j);
		}

		data.put("sanitizedAddress", sanitizedAddress);
		transformer.transform(data);

		assertEquals("number of words should be equals", row.get(2), data.get("numWords"));
		assertEquals("number of commas should be equals", row.get(3), data.get("numCommas"));
		assertEquals("numericPresent should be equals", row.get(4), data.get("numericPresent"));
		assertEquals("addressLength should be equals", row.get(5), data.get("addressLength"));
		assertEquals("favouredStart should be equals", row.get(6), data.get("favouredStart"));
		assertEquals("unfavouredStart should be equals", row.get(7), data.get("unfavouredStart"));
	}
}
 
Example #13
Source File: Normalization.java    From deeplearning4j with Apache License 2.0 6 votes vote down vote up
/**
 * Scale based on min,max
 *
 * @param dataFrame the dataframe to scale
 * @param min       the minimum value
 * @param max       the maximum value
 * @return the normalized dataframe per column
 */
public static Dataset<Row> normalize(Dataset<Row> dataFrame, double min, double max, List<String> skipColumns) {
    List<String> columnsList = DataFrames.toList(dataFrame.columns());
    columnsList.removeAll(skipColumns);
    String[] columnNames = DataFrames.toArray(columnsList);
    //first row is min second row is max, each column in a row is for a particular column
    List<Row> minMax = minMaxColumns(dataFrame, columnNames);
    for (int i = 0; i < columnNames.length; i++) {
        String columnName = columnNames[i];
        double dMin = ((Number) minMax.get(0).get(i)).doubleValue();
        double dMax = ((Number) minMax.get(1).get(i)).doubleValue();
        double maxSubMin = (dMax - dMin);
        if (maxSubMin == 0)
            maxSubMin = 1;

        Column newCol = dataFrame.col(columnName).minus(dMin).divide(maxSubMin).multiply(max - min).plus(min);
        dataFrame = dataFrame.withColumn(columnName, newCol);
    }


    return dataFrame;
}
 
Example #14
Source File: SparkRelationalOperator.java    From spliceengine with GNU Affero General Public License v3.0 6 votes vote down vote up
@Override
public Column getColumnExpression(Dataset<Row> leftDF,
                                  Dataset<Row> rightDF,
                                  Function<String, DataType> convertStringToDataTypeFunction) throws UnsupportedOperationException {
    Column leftExpr  = getLeftChild().getColumnExpression(leftDF, rightDF, convertStringToDataTypeFunction);
    Column rightExpr = getRightChild().getColumnExpression(leftDF, rightDF, convertStringToDataTypeFunction);

    if (relOpKind == EQUALS_RELOP)
        return leftExpr.equalTo(rightExpr);
    else if (relOpKind == NOT_EQUALS_RELOP)
        return leftExpr.notEqual(rightExpr);
    else if (relOpKind == GREATER_THAN_RELOP)
        return leftExpr.gt(rightExpr);
    else if (relOpKind == GREATER_EQUALS_RELOP)
        return leftExpr.geq(rightExpr);
    else if (relOpKind == LESS_THAN_RELOP)
        return leftExpr.lt(rightExpr);
    else if (relOpKind == LESS_EQUALS_RELOP)
        return leftExpr.leq(rightExpr);
    else if (relOpKind == IS_NULL_RELOP)
        return leftExpr.isNull();
    else if (relOpKind == IS_NOT_NULL_RELOP)
        return leftExpr.isNotNull();
    else
        throw new UnsupportedOperationException();
}
 
Example #15
Source File: MLContextTest.java    From systemds with Apache License 2.0 6 votes vote down vote up
@Test
public void testOutputDataFrameDoublesWithIDColumnFromMatrixDML() {
	System.out.println("MLContextTest - output DataFrame of doubles with ID column from matrix DML");

	String s = "M = matrix('1 2 3 4', rows=2, cols=2);";
	Script script = dml(s).out("M");
	Dataset<Row> df = ml.execute(script).getMatrix("M").toDFDoubleWithIDColumn();
	Dataset<Row> sortedDF = df.sort(RDDConverterUtils.DF_ID_COLUMN);
	List<Row> list = sortedDF.collectAsList();

	Row row1 = list.get(0);
	Assert.assertEquals(1.0, row1.getDouble(0), 0.0);
	Assert.assertEquals(1.0, row1.getDouble(1), 0.0);
	Assert.assertEquals(2.0, row1.getDouble(2), 0.0);

	Row row2 = list.get(1);
	Assert.assertEquals(2.0, row2.getDouble(0), 0.0);
	Assert.assertEquals(3.0, row2.getDouble(1), 0.0);
	Assert.assertEquals(4.0, row2.getDouble(2), 0.0);
}
 
Example #16
Source File: WindowAssignTranslatorBatch.java    From beam with Apache License 2.0 6 votes vote down vote up
@Override
public void translateTransform(
    PTransform<PCollection<T>, PCollection<T>> transform, TranslationContext context) {

  Window.Assign<T> assignTransform = (Window.Assign<T>) transform;
  @SuppressWarnings("unchecked")
  final PCollection<T> input = (PCollection<T>) context.getInput();
  @SuppressWarnings("unchecked")
  final PCollection<T> output = (PCollection<T>) context.getOutput();

  Dataset<WindowedValue<T>> inputDataset = context.getDataset(input);
  if (WindowingHelpers.skipAssignWindows(assignTransform, context)) {
    context.putDataset(output, inputDataset);
  } else {
    WindowFn<T, ?> windowFn = assignTransform.getWindowFn();
    WindowedValue.FullWindowedValueCoder<T> windowedValueCoder =
        WindowedValue.FullWindowedValueCoder.of(input.getCoder(), windowFn.windowCoder());
    Dataset<WindowedValue<T>> outputDataset =
        inputDataset.map(
            WindowingHelpers.assignWindowsMapFunction(windowFn),
            EncoderHelpers.fromBeamCoder(windowedValueCoder));
    context.putDataset(output, outputDataset);
  }
}
 
Example #17
Source File: TestWriteMetricsConfig.java    From iceberg with Apache License 2.0 5 votes vote down vote up
@Test
public void testCountMetricsCollectionForParquet() throws IOException {
  String tableLocation = temp.newFolder("iceberg-table").toString();

  HadoopTables tables = new HadoopTables(CONF);
  PartitionSpec spec = PartitionSpec.unpartitioned();
  Map<String, String> properties = Maps.newHashMap();
  properties.put(TableProperties.DEFAULT_WRITE_METRICS_MODE, "counts");
  Table table = tables.create(SIMPLE_SCHEMA, spec, properties, tableLocation);

  List<SimpleRecord> expectedRecords = Lists.newArrayList(
      new SimpleRecord(1, "a"),
      new SimpleRecord(2, "b"),
      new SimpleRecord(3, "c")
  );
  Dataset<Row> df = spark.createDataFrame(expectedRecords, SimpleRecord.class);
  df.select("id", "data")
      .coalesce(1)
      .write()
      .format("iceberg")
      .option("write-format", "parquet")
      .mode("append")
      .save(tableLocation);

  for (FileScanTask task : table.newScan().includeColumnStats().planFiles()) {
    DataFile file = task.file();
    Assert.assertEquals(2, file.nullValueCounts().size());
    Assert.assertEquals(2, file.valueCounts().size());
    Assert.assertTrue(file.lowerBounds().isEmpty());
    Assert.assertTrue(file.upperBounds().isEmpty());
  }
}
 
Example #18
Source File: TestAppendPlanner.java    From envelope with Apache License 2.0 5 votes vote down vote up
@Test
public void testPlansInserts() {
  Config config = ConfigFactory.empty();
  AppendPlanner ap = new AppendPlanner();
  assertNoValidationFailures(ap, config);
  ap.configure(config);

  List<Tuple2<MutationType, Dataset<Row>>> planned = ap.planMutationsForSet(dataFrame);

  assertEquals(planned.size(), 1);
  assertEquals(planned.get(0)._1(), MutationType.INSERT);
  assertEquals(planned.get(0)._2().count(), 1);
}
 
Example #19
Source File: ArrayToDatasetApp.java    From net.jgp.labs.spark with Apache License 2.0 5 votes vote down vote up
private void start() {
  SparkSession spark = SparkSession.builder()
      .appName("Array to Dataset<String>")
      .master("local")
      .getOrCreate();

  String[] l = new String[] { "a", "b", "c", "d" };
  List<String> data = Arrays.asList(l);
  Dataset<String> df = spark.createDataset(data, Encoders.STRING());
  df.show();
}
 
Example #20
Source File: VisualizerTest.java    From MegaSparkDiff with Apache License 2.0 5 votes vote down vote up
@Test
public void basicVisualizerTest()
{
    Pair<Dataset<Row>,Dataset<Row>> pair = getAppleTablePair("Test6", "Test7");
    String html = generateString(pair.getLeft(), pair.getRight(), "FRUIT", 100);
    if (html.isEmpty())
    {
        Assert.fail("html was empty");
    }
}
 
Example #21
Source File: VisualizerTest.java    From MegaSparkDiff with Apache License 2.0 5 votes vote down vote up
@Test
public void nullRightDfTest()
{
    Pair<Dataset<Row>,Dataset<Row>> pair = getAppleTablePair("Test1", "Test4");
    String html = generateString(pair.getLeft(), null, "FRUIT", 100);
    Assert.assertEquals("<h3>Error message: Right dataframe is null</h3>", html);
}
 
Example #22
Source File: VectorizedReadDictionaryEncodedFlatParquetDataBenchmark.java    From iceberg with Apache License 2.0 5 votes vote down vote up
private static Dataset<Row> withDateColumnDictEncoded(Dataset<Row> df) {
  return df.withColumn(
      "dateCol",
      when(modColumn(9, 0), to_date(lit("04/12/2019"), "MM/dd/yyyy"))
          .when(modColumn(9, 1), to_date(lit("04/13/2019"), "MM/dd/yyyy"))
          .when(modColumn(9, 2), to_date(lit("04/14/2019"), "MM/dd/yyyy"))
          .when(modColumn(9, 3), to_date(lit("04/15/2019"), "MM/dd/yyyy"))
          .when(modColumn(9, 4), to_date(lit("04/16/2019"), "MM/dd/yyyy"))
          .when(modColumn(9, 5), to_date(lit("04/17/2019"), "MM/dd/yyyy"))
          .when(modColumn(9, 6), to_date(lit("04/18/2019"), "MM/dd/yyyy"))
          .when(modColumn(9, 7), to_date(lit("04/19/2019"), "MM/dd/yyyy"))
          .when(modColumn(9, 8), to_date(lit("04/20/2019"), "MM/dd/yyyy")));
}
 
Example #23
Source File: MyVariantDatasetTest.java    From mmtf-spark with Apache License 2.0 5 votes vote down vote up
@Test
public void test2() throws IOException {
    List<String> uniprotIds = Arrays.asList("P15056"); // BRAF
    String query = "clinvar.rcv.clinical_significance:pathogenic OR clinvar.rcv.clinical_significance:likely pathogenic";
    Dataset<Row> ds = MyVariantDataset.getVariations(uniprotIds, query);
    assertEquals(1, ds.filter(
            "variationId = 'chr7:g.140501287T>C'"
            + " AND uniprotId = 'P15056'").count());
}
 
Example #24
Source File: TestInListDeriver.java    From envelope with Apache License 2.0 5 votes vote down vote up
@Test
public void testBatchSize() throws Exception {
  Dataset<Row> source = createTestDataframe();
  Dataset<Row> ref = createTestDataframe().withColumnRenamed("id", "fk").filter("value < 6");

  List<String> ids = Arrays.asList("A", "B", "C", "D", "E");

  Map<String, Dataset<Row>> dependencies = new HashMap<>();
  dependencies.put("df1", source);
  dependencies.put("df2", ref);

  Config config = ConfigFactory.empty()
      .withValue(InListDeriver.INLIST_BATCH_SIZE, ConfigValueFactory.fromAnyRef(1))
      .withValue(InListDeriver.INLIST_STEP_CONFIG, ConfigValueFactory.fromAnyRef("df1"))
      .withValue(InListDeriver.INLIST_FIELD_CONFIG, ConfigValueFactory.fromAnyRef("id"))
      .withValue(InListDeriver.INLIST_REFSTEP_CONFIG, ConfigValueFactory.fromAnyRef("df2"))
      .withValue(InListDeriver.INLIST_REFFIELD_CONFIG, ConfigValueFactory.fromAnyRef("fk"));

  InListDeriver deriver = new InListDeriver();

  assertNoValidationFailures(deriver, config);
  deriver.configure(config);

  List<Row> results = deriver.derive(dependencies).select("id").collectAsList();
  assertThat(results.size(), is(5));

  for (Row row : results) {
    assertThat(row.getString(0), in(ids));
  }
}
 
Example #25
Source File: KafkaImportApplicationIntegrationTest.java    From bpmn.ai with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
@Test
public void testKafkaStreamingImportActivityLevel() throws Exception {
    //run main class
    String args[] = {"-kb", KAFKA_HOST + ":" + KAFKA_PORT, "-fd", IMPORT_TEST_OUTPUT_DIRECTORY_ACTIVITY, "-bm", "true", "-sr", "false", "-dl", "activity", "-wd", "./src/test/resources/config/kafka_import_activity/","-sm", "overwrite"};
    SparkConf sparkConf = new SparkConf();
    sparkConf.setMaster("local[*]");
    SparkSession.builder().config(sparkConf).getOrCreate();
    KafkaImportApplication.main(args);

    //start Spark session
    SparkSession sparkSession = SparkSession.builder()
            .master("local[*]")
            .appName("IntegrationTest")
            .getOrCreate();

    //generate Dataset and create hash to compare
    Dataset<Row> importedDataset = sparkSession.read().load(IMPORT_TEST_OUTPUT_DIRECTORY_ACTIVITY);

    //check that dataset contains 55 lines
    assertEquals(55, importedDataset.count());

    //check hash of dataset
    String hash = BpmnaiUtils.getInstance().md5CecksumOfObject(importedDataset.collect());
    assertEquals("9CEE92C16D7803E0ECF57666FDAC60D7", hash);

    //close Spark session
    sparkSession.close();
}
 
Example #26
Source File: IcebergSourceNestedORCDataReadBenchmark.java    From iceberg with Apache License 2.0 5 votes vote down vote up
@Benchmark
@Threads(1)
public void readIceberg() {
  Map<String, String> tableProperties = Maps.newHashMap();
  tableProperties.put(SPLIT_OPEN_FILE_COST, Integer.toString(128 * 1024 * 1024));
  withTableProperties(tableProperties, () -> {
    String tableLocation = table().location();
    Dataset<Row> df = spark().read().format("iceberg").load(tableLocation);
    materialize(df);
  });
}
 
Example #27
Source File: SnapshotFunctionalityTest.java    From iceberg with Apache License 2.0 5 votes vote down vote up
@Test
public void rollbackToPreviousSnapshotAndReadData() {
  long oldId = table.history().get(0).snapshotId();

  table.rollback().toSnapshotId(oldId).commit();
  table.refresh();

  Dataset<Row> results = spark.read()
      .format("iceberg")
      .load(tableLocation.toString());

  results.createOrReplaceTempView("table");
  spark.sql("select * from table").show();
}
 
Example #28
Source File: AbstractJavaEsSparkStructuredStreamingTest.java    From elasticsearch-hadoop with Apache License 2.0 5 votes vote down vote up
@Test(expected = EsHadoopIllegalArgumentException.class)
public void test0FailOnIndexCreationDisabled() throws Exception {
    String target = wrapIndex(resource("test-nonexisting", "data"));
    JavaStreamingQueryTestHarness<RecordBean> test = new JavaStreamingQueryTestHarness<>(spark, Encoders.bean(RecordBean.class));

    RecordBean doc1 = new RecordBean();
    doc1.setId(1);
    doc1.setName("Spark");

    RecordBean doc2 = new RecordBean();
    doc2.setId(2);
    doc2.setName("Hadoop");

    RecordBean doc3 = new RecordBean();
    doc3.setId(3);
    doc3.setName("YARN");

    Dataset<RecordBean> dataset = test
            .withInput(doc1)
            .withInput(doc2)
            .withInput(doc3)
            .expectingToThrow(EsHadoopIllegalArgumentException.class)
            .stream();

    test.run(
            dataset.writeStream()
                    .option("checkpointLocation", checkpoint(target))
                    .option(ES_INDEX_AUTO_CREATE, "no")
                    .format("es"),
            target
    );

    assertTrue(!RestUtils.exists(target));
}
 
Example #29
Source File: IcebergSourceNestedParquetDataReadBenchmark.java    From iceberg with Apache License 2.0 5 votes vote down vote up
@Benchmark
@Threads(1)
public void readWithProjectionFileSourceNonVectorized() {
  Map<String, String> conf = Maps.newHashMap();
  conf.put(SQLConf.PARQUET_VECTORIZED_READER_ENABLED().key(), "false");
  conf.put(SQLConf.FILES_OPEN_COST_IN_BYTES().key(), Integer.toString(128 * 1024 * 1024));
  conf.put(SQLConf.NESTED_SCHEMA_PRUNING_ENABLED().key(), "true");
  withSQLConf(conf, () -> {
    Dataset<Row> df = spark().read().parquet(dataLocation()).selectExpr("nested.col3");
    materialize(df);
  });
}
 
Example #30
Source File: CustomReportService.java    From mmtf-spark with Apache License 2.0 5 votes vote down vote up
/**
 * Reads CSV file into a Spark dataset
 * 
 * @param fileName
 * @throws IOException
 */
private static Dataset<Row> readCsv(SparkSession spark, String inputFileName) throws IOException {
	Dataset<Row> dataset = spark.read().format("csv").option("header", "true").option("inferSchema", "true")
			.load(inputFileName);

	return dataset;
}