/*
 * Copyright (C) 2006 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package ru.noties.scrollable;

import android.content.Context;
import android.hardware.SensorManager;
import android.view.ViewConfiguration;
import android.view.animation.AnimationUtils;
import android.view.animation.Interpolator;


/**
 * <p>This class encapsulates scrolling. You can use scrollers ({Scroller}
 * or {OverScroller}) to collect the data you need to produce a scrolling
 * animation&mdash;for example, in response to a fling gesture. Scrollers track
 * scroll offsets for you over time, but they don't automatically apply those
 * positions to your view. It's your responsibility to get and apply new
 * coordinates at a rate that will make the scrolling animation look smooth.</p>
 *
 * <p>Here is a simple example:</p>
 *
 * <pre> private Scroller mScroller = new Scroller(context);
 * ...
 * public void zoomIn() {
 *     // Revert any animation currently in progress
 *     mScroller.forceFinished(true);
 *     // Start scrolling by providing a starting point and
 *     // the distance to travel
 *     mScroller.startScroll(0, 0, 100, 0);
 *     // Invalidate to request a redraw
 *     invalidate();
 * }</pre>
 *
 * <p>To track the changing positions of the x/y coordinates, use
 * {@link #computeScrollOffset}. The method returns a boolean to indicate
 * whether the scroller is finished. If it isn't, it means that a fling or
 * programmatic pan operation is still in progress. You can use this method to
 * find the current offsets of the x and y coordinates, for example:</p>
 *
 * <pre>if (mScroller.computeScrollOffset()) {
 *     // Get current x and y positions
 *     int currX = mScroller.getCurrX();
 *     int currY = mScroller.getCurrY();
 *    ...
 * }</pre>
 */
public class ScrollableScroller  {
    private final Interpolator mInterpolator;

    private int mMode;

    private int mStartX;
    private int mStartY;
    private int mFinalX;
    private int mFinalY;

    private int mMinX;
    private int mMaxX;
    private int mMinY;
    private int mMaxY;

    private int mCurrX;
    private int mCurrY;
    private long mStartTime;
    private int mDuration;
    private float mDurationReciprocal;
    private float mDeltaX;
    private float mDeltaY;
    private boolean mFinished;
    private boolean mFlywheel;

    private float mVelocity;
    private float mCurrVelocity;
    private int mDistance;

    private float mFlingFriction = ViewConfiguration.getScrollFriction();

    private static final int SCROLL_MODE = 0;
    private static final int FLING_MODE = 1;

    private static float DECELERATION_RATE = (float) (Math.log(0.78) / Math.log(0.9));
    private static final float INFLEXION = 0.35f; // Tension lines cross at (INFLEXION, 1)
    private static final float START_TENSION = 0.5f;
    private static final float END_TENSION = 1.0f;
    private static final float P1 = START_TENSION * INFLEXION;
    private static final float P2 = 1.0f - END_TENSION * (1.0f - INFLEXION);

    private static final int NB_SAMPLES = 100;
    private static final float[] SPLINE_POSITION = new float[NB_SAMPLES + 1];

    private float mDeceleration;
    private final float mPpi;

    // A context-specific coefficient adjusted to physical values.
    private float mPhysicalCoeff;

    static {
        float x_min = 0.0f;
        float y_min = 0.0f;
        for (int i = 0; i < NB_SAMPLES; i++) {
            final float alpha = (float) i / NB_SAMPLES;

            float x_max = 1.0f;
            float x, tx, coef;
            while (true) {
                x = x_min + (x_max - x_min) / 2.0f;
                coef = 3.0f * x * (1.0f - x);
                tx = coef * ((1.0f - x) * P1 + x * P2) + x * x * x;
                if (Math.abs(tx - alpha) < 1E-5) break;
                if (tx > alpha) x_max = x;
                else x_min = x;
            }
            SPLINE_POSITION[i] = coef * ((1.0f - x) * START_TENSION + x) + x * x * x;

            float y_max = 1.0f;
            float y, dy;
            while (true) {
                y = y_min + (y_max - y_min) / 2.0f;
                coef = 3.0f * y * (1.0f - y);
                dy = coef * ((1.0f - y) * START_TENSION + y) + y * y * y;
                if (Math.abs(dy - alpha) < 1E-5) break;
                if (dy > alpha) y_max = y;
                else y_min = y;
            }
        }
        SPLINE_POSITION[NB_SAMPLES] = 1.0f;
    }

    /**
     * Create a Scroller with the specified interpolator. If the interpolator is
     * null, the default (viscous) interpolator will be used. Specify whether or
     * not to support progressive "flywheel" behavior in flinging.
     */
    public ScrollableScroller(Context context, Interpolator interpolator, boolean flywheel) {
        mFinished = true;
        if (interpolator == null) {
            mInterpolator = new ViscousFluidInterpolator();
        } else {
            mInterpolator = interpolator;
        }
        mPpi = context.getResources().getDisplayMetrics().density * 160.0f;
        mDeceleration = computeDeceleration(ViewConfiguration.getScrollFriction());
        mFlywheel = flywheel;

        mPhysicalCoeff = computeDeceleration(0.84f); // look and feel tuning
    }

    /**
     * The amount of friction applied to flings. The default value
     * is {@link ViewConfiguration#getScrollFriction}.
     *
     * @param friction A scalar dimension-less value representing the coefficient of
     *         friction.
     */
    public final void setFriction(float friction) {
        mDeceleration = computeDeceleration(friction);
        mFlingFriction = friction;
    }

    private float computeDeceleration(float friction) {
        return SensorManager.GRAVITY_EARTH   // g (m/s^2)
                * 39.37f               // inch/meter
                * mPpi                 // pixels per inch
                * friction;
    }

    /**
     * Returns how long the scroll event will take, in milliseconds.
     *
     * @return The duration of the scroll in milliseconds.
     */
    public final int getDuration() {
        return mDuration;
    }

    /**
     * Returns the current Y offset in the scroll.
     *
     * @return The new Y offset as an absolute distance from the origin.
     */
    public final int getCurrY() {
        return mCurrY;
    }

    /**
     * Returns the current velocity.
     *
     * @return The original velocity less the deceleration. Result may be
     * negative.
     */
    public float getCurrVelocity() {
        return mMode == FLING_MODE ?
                mCurrVelocity : mVelocity - mDeceleration * timePassed() / 2000.0f;
    }

    /**
     * Returns where the scroll will end. Valid only for "fling" scrolls.
     *
     * @return The final Y offset as an absolute distance from the origin.
     */
    public final int getFinalY() {
        return mFinalY;
    }

    /**
     * Call this when you want to know the new location.  If it returns true,
     * the animation is not yet finished.
     */
    public boolean computeScrollOffset() {
        if (mFinished) {
            return false;
        }

        int timePassed = (int)(AnimationUtils.currentAnimationTimeMillis() - mStartTime);

        if (timePassed < mDuration) {
            switch (mMode) {
                case SCROLL_MODE:
                    final float x = mInterpolator.getInterpolation(timePassed * mDurationReciprocal);
                    mCurrX = mStartX + Math.round(x * mDeltaX);
                    mCurrY = mStartY + Math.round(x * mDeltaY);
                    break;
                case FLING_MODE:
                    final float t = (float) timePassed / mDuration;
                    final int index = (int) (NB_SAMPLES * t);
                    float distanceCoef = 1.f;
                    float velocityCoef = 0.f;
                    if (index < NB_SAMPLES) {
                        final float t_inf = (float) index / NB_SAMPLES;
                        final float t_sup = (float) (index + 1) / NB_SAMPLES;
                        final float d_inf = SPLINE_POSITION[index];
                        final float d_sup = SPLINE_POSITION[index + 1];
                        velocityCoef = (d_sup - d_inf) / (t_sup - t_inf);
                        distanceCoef = d_inf + (t - t_inf) * velocityCoef;
                    }

                    mCurrVelocity = velocityCoef * mDistance / mDuration * 1000.0f;

                    mCurrX = mStartX + Math.round(distanceCoef * (mFinalX - mStartX));
                    // Pin to mMinX <= mCurrX <= mMaxX
                    mCurrX = Math.min(mCurrX, mMaxX);
                    mCurrX = Math.max(mCurrX, mMinX);

                    mCurrY = mStartY + Math.round(distanceCoef * (mFinalY - mStartY));
                    // Pin to mMinY <= mCurrY <= mMaxY
                    mCurrY = Math.min(mCurrY, mMaxY);
                    mCurrY = Math.max(mCurrY, mMinY);

                    if (mCurrX == mFinalX && mCurrY == mFinalY) {
                        mFinished = true;
                    }

                    break;
            }
        }
        else {
            mCurrX = mFinalX;
            mCurrY = mFinalY;
            mFinished = true;
        }
        return true;
    }

    /**
     * Start scrolling based on a fling gesture. The distance travelled will
     * depend on the initial velocity of the fling.
     *
     * @param startX Starting point of the scroll (X)
     * @param startY Starting point of the scroll (Y)
     * @param velocityX Initial velocity of the fling (X) measured in pixels per
     *        second.
     * @param velocityY Initial velocity of the fling (Y) measured in pixels per
     *        second
     * @param minX Minimum X value. The scroller will not scroll past this
     *        point.
     * @param maxX Maximum X value. The scroller will not scroll past this
     *        point.
     * @param minY Minimum Y value. The scroller will not scroll past this
     *        point.
     * @param maxY Maximum Y value. The scroller will not scroll past this
     *        point.
     */
    public void fling(int startX, int startY, int velocityX, int velocityY,
                      int minX, int maxX, int minY, int maxY) {
        // Continue a scroll or fling in progress
        if (mFlywheel && !mFinished) {
            float oldVel = getCurrVelocity();

            float dx = (float) (mFinalX - mStartX);
            float dy = (float) (mFinalY - mStartY);
            float hyp = (float) Math.hypot(dx, dy);

            float ndx = dx / hyp;
            float ndy = dy / hyp;

            float oldVelocityX = ndx * oldVel;
            float oldVelocityY = ndy * oldVel;
            if (Math.signum(velocityX) == Math.signum(oldVelocityX) &&
                    Math.signum(velocityY) == Math.signum(oldVelocityY)) {
                velocityX += oldVelocityX;
                velocityY += oldVelocityY;
            }
        }

        mMode = FLING_MODE;
        mFinished = false;

        float velocity = (float) Math.hypot(velocityX, velocityY);

        mVelocity = velocity;
        mDuration = getSplineFlingDuration(velocity);
        mStartTime = AnimationUtils.currentAnimationTimeMillis();
        mStartX = startX;
        mStartY = startY;

        float coeffX = velocity == 0 ? 1.0f : velocityX / velocity;
        float coeffY = velocity == 0 ? 1.0f : velocityY / velocity;

        double totalDistance = getSplineFlingDistance(velocity);
        mDistance = (int) (totalDistance * Math.signum(velocity));

        mMinX = minX;
        mMaxX = maxX;
        mMinY = minY;
        mMaxY = maxY;

        mFinalX = startX + (int) Math.round(totalDistance * coeffX);
        // Pin to mMinX <= mFinalX <= mMaxX
        mFinalX = Math.min(mFinalX, mMaxX);
        mFinalX = Math.max(mFinalX, mMinX);

        mFinalY = startY + (int) Math.round(totalDistance * coeffY);
        // Pin to mMinY <= mFinalY <= mMaxY
        mFinalY = Math.min(mFinalY, mMaxY);
        mFinalY = Math.max(mFinalY, mMinY);
    }

    private double getSplineDeceleration(float velocity) {
        return Math.log(INFLEXION * Math.abs(velocity) / (mFlingFriction * mPhysicalCoeff));
    }

    /*private*/ int getSplineFlingDuration(float velocity) {
        final double l = getSplineDeceleration(velocity);
        final double decelMinusOne = DECELERATION_RATE - 1.0;
        return (int) (1000.0 * Math.exp(l / decelMinusOne));
    }

    private double getSplineFlingDistance(float velocity) {
        final double l = getSplineDeceleration(velocity);
        final double decelMinusOne = DECELERATION_RATE - 1.0;
        return mFlingFriction * mPhysicalCoeff * Math.exp(DECELERATION_RATE / decelMinusOne * l);
    }

    /**
     * Stops the animation. Contrary to {forceFinished(boolean)},
     * aborting the animating cause the scroller to move to the final x and y
     * position
     *
     * forceFinished(boolean)
     */
    public void abortAnimation() {
        mCurrX = mFinalX;
        mCurrY = mFinalY;
        mFinished = true;
    }

    /**
     * Returns the time elapsed since the beginning of the scrolling.
     *
     * @return The elapsed time in milliseconds.
     */
    public int timePassed() {
        return (int)(AnimationUtils.currentAnimationTimeMillis() - mStartTime);
    }

    /**
     * Sets the final position (Y) for this scroller.
     *
     * @param newY The new Y offset as an absolute distance from the origin.
     * extendDuration(int)
     * setFinalX(int)
     */
    public void setFinalY(int newY) {
        mFinalY = newY;
        mDeltaY = mFinalY - mStartY;
        mFinished = false;
    }


    static class ViscousFluidInterpolator implements Interpolator {
        /** Controls the viscous fluid effect (how much of it). */
        private static final float VISCOUS_FLUID_SCALE = 8.0f;

        private static final float VISCOUS_FLUID_NORMALIZE;
        private static final float VISCOUS_FLUID_OFFSET;

        static {

            // must be set to 1.0 (used in viscousFluid())
            VISCOUS_FLUID_NORMALIZE = 1.0f / viscousFluid(1.0f);
            // account for very small floating-point error
            VISCOUS_FLUID_OFFSET = 1.0f - VISCOUS_FLUID_NORMALIZE * viscousFluid(1.0f);
        }

        private static float viscousFluid(float x) {
            x *= VISCOUS_FLUID_SCALE;
            if (x < 1.0f) {
                x -= (1.0f - (float)Math.exp(-x));
            } else {
                float start = 0.36787944117f;   // 1/e == exp(-1)
                x = 1.0f - (float)Math.exp(1.0f - x);
                x = start + x * (1.0f - start);
            }
            return x;
        }

        @Override
        public float getInterpolation(float input) {
            final float interpolated = VISCOUS_FLUID_NORMALIZE * viscousFluid(input);
            if (interpolated > 0) {
                return interpolated + VISCOUS_FLUID_OFFSET;
            }
            return interpolated;
        }
    }
}