/*
 * Copyright 2002-2017 the original author or authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.springframework.transaction.interceptor;

import java.lang.reflect.Method;
import java.lang.reflect.Modifier;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import org.springframework.core.BridgeMethodResolver;
import org.springframework.core.MethodClassKey;
import org.springframework.util.ClassUtils;

/**
 * Abstract implementation of {@link TransactionAttributeSource} that caches
 * attributes for methods and implements a fallback policy: 1. specific target
 * method; 2. target class; 3. declaring method; 4. declaring class/interface.
 *
 * <p>Defaults to using the target class's transaction attribute if none is
 * associated with the target method. Any transaction attribute associated with
 * the target method completely overrides a class transaction attribute.
 * If none found on the target class, the interface that the invoked method
 * has been called through (in case of a JDK proxy) will be checked.
 *
 * <p>This implementation caches attributes by method after they are first used.
 * If it is ever desirable to allow dynamic changing of transaction attributes
 * (which is very unlikely), caching could be made configurable. Caching is
 * desirable because of the cost of evaluating rollback rules.
 *
 * @author Rod Johnson
 * @author Juergen Hoeller
 * @since 1.1
 */
public abstract class AbstractFallbackTransactionAttributeSource implements TransactionAttributeSource {

	/**
	 * Canonical value held in cache to indicate no transaction attribute was
	 * found for this method, and we don't need to look again.
	 */
	private final static TransactionAttribute NULL_TRANSACTION_ATTRIBUTE = new DefaultTransactionAttribute();


	/**
	 * Logger available to subclasses.
	 * <p>As this base class is not marked Serializable, the logger will be recreated
	 * after serialization - provided that the concrete subclass is Serializable.
	 */
	protected final Log logger = LogFactory.getLog(getClass());

	/**
	 * Cache of TransactionAttributes, keyed by method on a specific target class.
	 * <p>As this base class is not marked Serializable, the cache will be recreated
	 * after serialization - provided that the concrete subclass is Serializable.
	 */
	private final Map<Object, TransactionAttribute> attributeCache =
			new ConcurrentHashMap<Object, TransactionAttribute>(1024);


	/**
	 * Determine the transaction attribute for this method invocation.
	 * <p>Defaults to the class's transaction attribute if no method attribute is found.
	 * @param method the method for the current invocation (never {@code null})
	 * @param targetClass the target class for this invocation (may be {@code null})
	 * @return TransactionAttribute for this method, or {@code null} if the method
	 * is not transactional
	 */
	@Override
	public TransactionAttribute getTransactionAttribute(Method method, Class<?> targetClass) {
		if (method.getDeclaringClass() == Object.class) {
			return null;
		}

		// First, see if we have a cached value.
		Object cacheKey = getCacheKey(method, targetClass);
		Object cached = this.attributeCache.get(cacheKey);
		if (cached != null) {
			// Value will either be canonical value indicating there is no transaction attribute,
			// or an actual transaction attribute.
			if (cached == NULL_TRANSACTION_ATTRIBUTE) {
				return null;
			}
			else {
				return (TransactionAttribute) cached;
			}
		}
		else {
			// We need to work it out.
			TransactionAttribute txAttr = computeTransactionAttribute(method, targetClass);
			// Put it in the cache.
			if (txAttr == null) {
				this.attributeCache.put(cacheKey, NULL_TRANSACTION_ATTRIBUTE);
			}
			else {
				String methodIdentification = ClassUtils.getQualifiedMethodName(method, targetClass);
				if (txAttr instanceof DefaultTransactionAttribute) {
					((DefaultTransactionAttribute) txAttr).setDescriptor(methodIdentification);
				}
				if (logger.isDebugEnabled()) {
					logger.debug("Adding transactional method '" + methodIdentification + "' with attribute: " + txAttr);
				}
				this.attributeCache.put(cacheKey, txAttr);
			}
			return txAttr;
		}
	}

	/**
	 * Determine a cache key for the given method and target class.
	 * <p>Must not produce same key for overloaded methods.
	 * Must produce same key for different instances of the same method.
	 * @param method the method (never {@code null})
	 * @param targetClass the target class (may be {@code null})
	 * @return the cache key (never {@code null})
	 */
	protected Object getCacheKey(Method method, Class<?> targetClass) {
		return new MethodClassKey(method, targetClass);
	}

	/**
	 * Same signature as {@link #getTransactionAttribute}, but doesn't cache the result.
	 * {@link #getTransactionAttribute} is effectively a caching decorator for this method.
	 * <p>As of 4.1.8, this method can be overridden.
	 * @since 4.1.8
	 * @see #getTransactionAttribute
	 */
	protected TransactionAttribute computeTransactionAttribute(Method method, Class<?> targetClass) {
		// Don't allow no-public methods as required.
		if (allowPublicMethodsOnly() && !Modifier.isPublic(method.getModifiers())) {
			return null;
		}

		// Ignore CGLIB subclasses - introspect the actual user class.
		Class<?> userClass = ClassUtils.getUserClass(targetClass);
		// The method may be on an interface, but we need attributes from the target class.
		// If the target class is null, the method will be unchanged.
		Method specificMethod = ClassUtils.getMostSpecificMethod(method, userClass);
		// If we are dealing with method with generic parameters, find the original method.
		specificMethod = BridgeMethodResolver.findBridgedMethod(specificMethod);

		// First try is the method in the target class.
		TransactionAttribute txAttr = findTransactionAttribute(specificMethod);
		if (txAttr != null) {
			return txAttr;
		}

		// Second try is the transaction attribute on the target class.
		txAttr = findTransactionAttribute(specificMethod.getDeclaringClass());
		if (txAttr != null && ClassUtils.isUserLevelMethod(method)) {
			return txAttr;
		}

		if (specificMethod != method) {
			// Fallback is to look at the original method.
			txAttr = findTransactionAttribute(method);
			if (txAttr != null) {
				return txAttr;
			}
			// Last fallback is the class of the original method.
			txAttr = findTransactionAttribute(method.getDeclaringClass());
			if (txAttr != null && ClassUtils.isUserLevelMethod(method)) {
				return txAttr;
			}
		}

		return null;
	}


	/**
	 * Subclasses need to implement this to return the transaction attribute
	 * for the given method, if any.
	 * @param method the method to retrieve the attribute for
	 * @return all transaction attribute associated with this method
	 * (or {@code null} if none)
	 */
	protected abstract TransactionAttribute findTransactionAttribute(Method method);

	/**
	 * Subclasses need to implement this to return the transaction attribute
	 * for the given class, if any.
	 * @param clazz the class to retrieve the attribute for
	 * @return all transaction attribute associated with this class
	 * (or {@code null} if none)
	 */
	protected abstract TransactionAttribute findTransactionAttribute(Class<?> clazz);


	/**
	 * Should only public methods be allowed to have transactional semantics?
	 * <p>The default implementation returns {@code false}.
	 */
	protected boolean allowPublicMethodsOnly() {
		return false;
	}

}