/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.examples.mllib; // $example on$ import com.huangyueran.spark.utils.Constant; import com.huangyueran.spark.utils.SparkUtils; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function; import org.apache.spark.mllib.fpm.AssociationRules; import org.apache.spark.mllib.fpm.FPGrowth; import org.apache.spark.mllib.fpm.FPGrowthModel; import java.util.Arrays; import java.util.List; // $example off$ // $example on$ // $example off$ public class JavaSimpleFPGrowth { public static void main(String[] args) { JavaSparkContext sc = SparkUtils.getLocalSparkContext(JavaSimpleFPGrowth.class); // $example on$ JavaRDD<String> data = sc.textFile(Constant.LOCAL_FILE_PREX +"/data/mllib/sample_fpgrowth.txt"); JavaRDD<List<String>> transactions = data.map( new Function<String, List<String>>() { public List<String> call(String line) { String[] parts = line.split(" "); return Arrays.asList(parts); } } ); FPGrowth fpg = new FPGrowth() .setMinSupport(0.2) .setNumPartitions(10); FPGrowthModel<String> model = fpg.run(transactions); for (FPGrowth.FreqItemset<String> itemset: model.freqItemsets().toJavaRDD().collect()) { System.out.println("[" + itemset.javaItems() + "], " + itemset.freq()); } double minConfidence = 0.8; for (AssociationRules.Rule<String> rule : model.generateAssociationRules(minConfidence).toJavaRDD().collect()) { System.out.println( rule.javaAntecedent() + " => " + rule.javaConsequent() + ", " + rule.confidence()); } // $example off$ sc.stop(); } }