/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.util.fst;


import java.io.IOException;

import org.apache.lucene.util.ArrayUtil;
import org.apache.lucene.util.RamUsageEstimator;

import static org.apache.lucene.util.fst.FST.Arc.BitTable;

/** Can next() and advance() through the terms in an FST
 *
 * @lucene.experimental
*/

abstract class FSTEnum<T> {
  protected final FST<T> fst;

  @SuppressWarnings({"rawtypes","unchecked"}) protected FST.Arc<T>[] arcs = new FST.Arc[10];
  // outputs are cumulative
  @SuppressWarnings({"rawtypes","unchecked"}) protected T[] output = (T[]) new Object[10];

  protected final T NO_OUTPUT;
  protected final FST.BytesReader fstReader;

  protected int upto;
  int targetLength;

  /** doFloor controls the behavior of advance: if it's true
   *  doFloor is true, advance positions to the biggest
   *  term before target.  */
  FSTEnum(FST<T> fst) {
    this.fst = fst;
    fstReader = fst.getBytesReader();
    NO_OUTPUT = fst.outputs.getNoOutput();
    fst.getFirstArc(getArc(0));
    output[0] = NO_OUTPUT;
  }

  protected abstract int getTargetLabel();
  protected abstract int getCurrentLabel();

  protected abstract void setCurrentLabel(int label);
  protected abstract void grow();

  /** Rewinds enum state to match the shared prefix between
   *  current term and target term */
  private void rewindPrefix() throws IOException {
    if (upto == 0) {
      //System.out.println("  init");
      upto = 1;
      fst.readFirstTargetArc(getArc(0), getArc(1), fstReader);
      return;
    }
    //System.out.println("  rewind upto=" + upto + " vs targetLength=" + targetLength);

    final int currentLimit = upto;
    upto = 1;
    while (upto < currentLimit && upto <= targetLength+1) {
      final int cmp = getCurrentLabel() - getTargetLabel();
      if (cmp < 0) {
        // seek forward
        //System.out.println("    seek fwd");
        break;
      } else if (cmp > 0) {
        // seek backwards -- reset this arc to the first arc
        final FST.Arc<T> arc = getArc(upto);
        fst.readFirstTargetArc(getArc(upto-1), arc, fstReader);
        //System.out.println("    seek first arc");
        break;
      }
      upto++;
    }
    //System.out.println("  fall through upto=" + upto);
  }

  protected void doNext() throws IOException {
    //System.out.println("FE: next upto=" + upto);
    if (upto == 0) {
      //System.out.println("  init");
      upto = 1;
      fst.readFirstTargetArc(getArc(0), getArc(1), fstReader);
    } else {
      // pop
      //System.out.println("  check pop curArc target=" + arcs[upto].target + " label=" + arcs[upto].label + " isLast?=" + arcs[upto].isLast());
      while (arcs[upto].isLast()) {
        upto--;
        if (upto == 0) {
          //System.out.println("  eof");
          return;
        }
      }
      fst.readNextArc(arcs[upto], fstReader);
    }

    pushFirst();
  }

  // TODO: should we return a status here (SEEK_FOUND / SEEK_NOT_FOUND /
  // SEEK_END)?  saves the eq check above?

  /** Seeks to smallest term that's &gt;= target. */
  protected void doSeekCeil() throws IOException {

    //System.out.println("    advance len=" + target.length + " curlen=" + current.length);

    // TODO: possibly caller could/should provide common
    // prefix length?  ie this work may be redundant if
    // caller is in fact intersecting against its own
    // automaton

    //System.out.println("FE.seekCeil upto=" + upto);

    // Save time by starting at the end of the shared prefix
    // b/w our current term & the target:
    rewindPrefix();
    //System.out.println("  after rewind upto=" + upto);

    FST.Arc<T> arc = getArc(upto);
    //System.out.println("  init targetLabel=" + targetLabel);

    // Now scan forward, matching the new suffix of the target
    while(arc != null) {
      int targetLabel = getTargetLabel();
      //System.out.println("  cycle upto=" + upto + " arc.label=" + arc.label + " (" + (char) arc.label + ") vs targetLabel=" + targetLabel);
      if (arc.bytesPerArc() != 0 && arc.label() != FST.END_LABEL) {
        // Arcs are in an array
        final FST.BytesReader in = fst.getBytesReader();
        if (arc.nodeFlags() == FST.ARCS_FOR_DIRECT_ADDRESSING) {
          arc = doSeekCeilArrayDirectAddressing(arc, targetLabel, in);
        } else {
          assert arc.nodeFlags() == FST.ARCS_FOR_BINARY_SEARCH;
          arc = doSeekCeilArrayPacked(arc, targetLabel, in);
        }
      } else {
        arc = doSeekCeilList(arc, targetLabel);
      }
    }
  }

  private FST.Arc<T> doSeekCeilArrayDirectAddressing(final FST.Arc<T> arc, final int targetLabel, final FST.BytesReader in) throws IOException {
    // The array is addressed directly by label, with presence bits to compute the actual arc offset.

    int targetIndex = targetLabel - arc.firstLabel();
    if (targetIndex >= arc.numArcs()) {
      // Target is beyond the last arc, out of label range.
      // Dead end (target is after the last arc);
      // rollback to last fork then push
      upto--;
      while(true) {
        if (upto == 0) {
          return null;
        }
        final FST.Arc<T> prevArc = getArc(upto);
        //System.out.println("  rollback upto=" + upto + " arc.label=" + prevArc.label + " isLast?=" + prevArc.isLast());
        if (!prevArc.isLast()) {
          fst.readNextArc(prevArc, fstReader);
          pushFirst();
          return null;
        }
        upto--;
      }
    } else {
      if (targetIndex < 0) {
        targetIndex = -1;
      } else if (BitTable.isBitSet(targetIndex, arc, in)) {
        fst.readArcByDirectAddressing(arc, in, targetIndex);
        assert arc.label() == targetLabel;
        // found -- copy pasta from below
        output[upto] = fst.outputs.add(output[upto - 1], arc.output());
        if (targetLabel == FST.END_LABEL) {
          return null;
        }
        setCurrentLabel(arc.label());
        incr();
        return fst.readFirstTargetArc(arc, getArc(upto), fstReader);
      }
      // Not found, return the next arc (ceil).
      int ceilIndex = BitTable.nextBitSet(targetIndex, arc, in);
      assert ceilIndex != -1;
      fst.readArcByDirectAddressing(arc, in, ceilIndex);
      assert arc.label() > targetLabel;
      pushFirst();
      return null;
    }
  }

  private FST.Arc<T> doSeekCeilArrayPacked(final FST.Arc<T> arc, final int targetLabel, final FST.BytesReader in) throws IOException {
    // The array is packed -- use binary search to find the target.
    int idx = Util.binarySearch(fst, arc, targetLabel);
    if (idx >= 0) {
      // Match
      fst.readArcByIndex(arc, in, idx);
      assert arc.arcIdx() == idx;
      assert arc.label() == targetLabel: "arc.label=" + arc.label() + " vs targetLabel=" + targetLabel + " mid=" + idx;
      output[upto] = fst.outputs.add(output[upto-1], arc.output());
      if (targetLabel == FST.END_LABEL) {
        return null;
      }
      setCurrentLabel(arc.label());
      incr();
      return fst.readFirstTargetArc(arc, getArc(upto), fstReader);
    }
    idx = -1 - idx;
    if (idx == arc.numArcs()) {
      // Dead end
      fst.readArcByIndex(arc, in, idx - 1);
      assert arc.isLast();
      // Dead end (target is after the last arc);
      // rollback to last fork then push
      upto--;
      while(true) {
        if (upto == 0) {
          return null;
        }
        final FST.Arc<T> prevArc = getArc(upto);
        //System.out.println("  rollback upto=" + upto + " arc.label=" + prevArc.label + " isLast?=" + prevArc.isLast());
        if (!prevArc.isLast()) {
          fst.readNextArc(prevArc, fstReader);
          pushFirst();
          return null;
        }
        upto--;
      }
    } else {
      // Ceiling - arc with least higher label
      fst.readArcByIndex(arc, in, idx);
      assert arc.label() > targetLabel;
      pushFirst();
      return null;
    }
  }

  private FST.Arc<T> doSeekCeilList(final FST.Arc<T> arc, final int targetLabel) throws IOException {
    // Arcs are not array'd -- must do linear scan:
    if (arc.label() == targetLabel) {
      // recurse
      output[upto] = fst.outputs.add(output[upto-1], arc.output());
      if (targetLabel == FST.END_LABEL) {
        return null;
      }
      setCurrentLabel(arc.label());
      incr();
      return fst.readFirstTargetArc(arc, getArc(upto), fstReader);
    } else if (arc.label() > targetLabel) {
      pushFirst();
      return null;
    } else if (arc.isLast()) {
      // Dead end (target is after the last arc);
      // rollback to last fork then push
      upto--;
      while(true) {
        if (upto == 0) {
          return null;
        }
        final FST.Arc<T> prevArc = getArc(upto);
        //System.out.println("  rollback upto=" + upto + " arc.label=" + prevArc.label + " isLast?=" + prevArc.isLast());
        if (!prevArc.isLast()) {
          fst.readNextArc(prevArc, fstReader);
          pushFirst();
          return null;
        }
        upto--;
      }
    } else {
      // keep scanning
      //System.out.println("    next scan");
      fst.readNextArc(arc, fstReader);
    }
    return arc;
  }

  // Todo: should we return a status here (SEEK_FOUND / SEEK_NOT_FOUND /
  // SEEK_END)?  saves the eq check above?
  /** Seeks to largest term that's &lt;= target. */
  void doSeekFloor() throws IOException {

    // TODO: possibly caller could/should provide common
    // prefix length?  ie this work may be redundant if
    // caller is in fact intersecting against its own
    // automaton
    //System.out.println("FE: seek floor upto=" + upto);

    // Save CPU by starting at the end of the shared prefix
    // b/w our current term & the target:
    rewindPrefix();

    //System.out.println("FE: after rewind upto=" + upto);

    FST.Arc<T> arc = getArc(upto);

    //System.out.println("FE: init targetLabel=" + targetLabel);

    // Now scan forward, matching the new suffix of the target
    while (arc != null) {
      //System.out.println("  cycle upto=" + upto + " arc.label=" + arc.label + " (" + (char) arc.label + ") targetLabel=" + targetLabel + " isLast?=" + arc.isLast() + " bba=" + arc.bytesPerArc);
      int targetLabel = getTargetLabel();

      if (arc.bytesPerArc() != 0 && arc.label() != FST.END_LABEL) {
        // Arcs are in an array
        final FST.BytesReader in = fst.getBytesReader();
        if (arc.nodeFlags() == FST.ARCS_FOR_DIRECT_ADDRESSING) {
          arc = doSeekFloorArrayDirectAddressing(arc, targetLabel, in);
        } else {
          assert arc.nodeFlags() == FST.ARCS_FOR_BINARY_SEARCH;
          arc = doSeekFloorArrayPacked(arc, targetLabel, in);
        }
      } else {
        arc = doSeekFloorList(arc, targetLabel);
      }
    }
  }

  private FST.Arc<T> doSeekFloorArrayDirectAddressing(FST.Arc<T> arc, int targetLabel, FST.BytesReader in) throws IOException {
    // The array is addressed directly by label, with presence bits to compute the actual arc offset.

    int targetIndex = targetLabel - arc.firstLabel();
    if (targetIndex < 0) {
      // Before first arc.
      return backtrackToFloorArc(arc, targetLabel, in);
   } else if (targetIndex >= arc.numArcs()) {
      // After last arc.
      fst.readLastArcByDirectAddressing(arc, in);
      assert arc.label() < targetLabel;
      assert arc.isLast();
      pushLast();
      return null;
    } else {
      // Within label range.
      if (BitTable.isBitSet(targetIndex, arc, in)) {
        fst.readArcByDirectAddressing(arc, in, targetIndex);
        assert arc.label() == targetLabel;
        // found -- copy pasta from below
        output[upto] = fst.outputs.add(output[upto-1], arc.output());
        if (targetLabel == FST.END_LABEL) {
          return null;
        }
        setCurrentLabel(arc.label());
        incr();
        return fst.readFirstTargetArc(arc, getArc(upto), fstReader);
      }
      // Scan backwards to find a floor arc.
      int floorIndex = BitTable.previousBitSet(targetIndex, arc, in);
      assert floorIndex != -1;
      fst.readArcByDirectAddressing(arc, in, floorIndex);
      assert arc.label() < targetLabel;
      assert arc.isLast() || fst.readNextArcLabel(arc, in) > targetLabel;
      pushLast();
      return null;
    }
  }

  /**
   * Backtracks until it finds a node which first arc is before our target label.`
   * Then on the node, finds the arc just before the targetLabel.
   *
   * @return null to continue the seek floor recursion loop.
   */
  private FST.Arc<T> backtrackToFloorArc(FST.Arc<T> arc, int targetLabel, final FST.BytesReader in) throws IOException {
    while (true) {
      // First, walk backwards until we find a node which first arc is before our target label.
      fst.readFirstTargetArc(getArc(upto-1), arc, fstReader);
      if (arc.label() < targetLabel) {
        // Then on this node, find the arc just before the targetLabel.
        if (!arc.isLast()) {
          if (arc.bytesPerArc() != 0 && arc.label() != FST.END_LABEL) {
            if (arc.nodeFlags() == FST.ARCS_FOR_BINARY_SEARCH) {
              findNextFloorArcBinarySearch(arc, targetLabel, in);
            } else {
              assert arc.nodeFlags() == FST.ARCS_FOR_DIRECT_ADDRESSING;
              findNextFloorArcDirectAddressing(arc, targetLabel, in);
            }
          } else {
            while (!arc.isLast() && fst.readNextArcLabel(arc, in) < targetLabel) {
              fst.readNextArc(arc, fstReader);
            }
          }
        }
        assert arc.label() < targetLabel;
        assert arc.isLast() || fst.readNextArcLabel(arc, in) >= targetLabel;
        pushLast();
        return null;
      }
      upto--;
      if (upto == 0) {
        return null;
      }
      targetLabel = getTargetLabel();
      arc = getArc(upto);
    }
  }

  /**
   * Finds and reads an arc on the current node which label is strictly less than the given label.
   * Skips the first arc, finds next floor arc; or none if the floor arc is the first
   * arc itself (in this case it has already been read).
   * <p>
   * Precondition: the given arc is the first arc of the node.
   */
  private void findNextFloorArcDirectAddressing(FST.Arc<T> arc, int targetLabel, final FST.BytesReader in) throws IOException {
    assert arc.nodeFlags() == FST.ARCS_FOR_DIRECT_ADDRESSING;
    assert arc.label() != FST.END_LABEL;
    assert arc.label() == arc.firstLabel();
    if (arc.numArcs() > 1) {
      int targetIndex = targetLabel - arc.firstLabel();
      assert targetIndex >= 0;
      if (targetIndex >= arc.numArcs()) {
        // Beyond last arc. Take last arc.
        fst.readLastArcByDirectAddressing(arc, in);
      } else {
        // Take the preceding arc, even if the target is present.
        int floorIndex = BitTable.previousBitSet(targetIndex, arc, in);
        if (floorIndex > 0) {
          fst.readArcByDirectAddressing(arc, in, floorIndex);
        }
      }
    }
  }

  /**
   * Same as {@link #findNextFloorArcDirectAddressing} for binary search node.
   */
  private void findNextFloorArcBinarySearch(FST.Arc<T> arc, int targetLabel, FST.BytesReader in) throws IOException {
    assert arc.nodeFlags() == FST.ARCS_FOR_BINARY_SEARCH;
    assert arc.label() != FST.END_LABEL;
    assert arc.arcIdx() == 0;
    if (arc.numArcs() > 1) {
      int idx = Util.binarySearch(fst, arc, targetLabel);
      assert idx != -1;
      if (idx > 1) {
        fst.readArcByIndex(arc, in, idx - 1);
      } else if (idx < -2) {
        fst.readArcByIndex(arc, in, -2 - idx);
      }
    }
  }

  private FST.Arc<T> doSeekFloorArrayPacked(FST.Arc<T> arc, int targetLabel, final FST.BytesReader in) throws IOException {
    // Arcs are fixed array -- use binary search to find the target.
    int idx = Util.binarySearch(fst, arc, targetLabel);

    if (idx >= 0) {
      // Match -- recurse
      //System.out.println("  match!  arcIdx=" + idx);
      fst.readArcByIndex(arc, in, idx);
      assert arc.arcIdx() == idx;
      assert arc.label() == targetLabel: "arc.label=" + arc.label() + " vs targetLabel=" + targetLabel + " mid=" + idx;
      output[upto] = fst.outputs.add(output[upto-1], arc.output());
      if (targetLabel == FST.END_LABEL) {
        return null;
      }
      setCurrentLabel(arc.label());
      incr();
      return fst.readFirstTargetArc(arc, getArc(upto), fstReader);
    } else if (idx == -1) {
      // Before first arc.
      return backtrackToFloorArc(arc, targetLabel, in);
    } else {
      // There is a floor arc; idx will be (-1 - (floor + 1)).
      fst.readArcByIndex(arc, in, -2 - idx);
      assert arc.isLast() || fst.readNextArcLabel(arc, in) > targetLabel;
      assert arc.label() < targetLabel: "arc.label=" + arc.label() + " vs targetLabel=" + targetLabel;
      pushLast();
      return null;
    }        
  }

  private FST.Arc<T> doSeekFloorList(FST.Arc<T> arc, int targetLabel) throws IOException {
    if (arc.label() == targetLabel) {
      // Match -- recurse
      output[upto] = fst.outputs.add(output[upto-1], arc.output());
      if (targetLabel == FST.END_LABEL) {
        return null;
      }
      setCurrentLabel(arc.label());
      incr();
      return fst.readFirstTargetArc(arc, getArc(upto), fstReader);
    } else if (arc.label() > targetLabel) {
      // TODO: if each arc could somehow read the arc just
      // before, we can save this re-scan.  The ceil case
      // doesn't need this because it reads the next arc
      // instead:
      while(true) {
        // First, walk backwards until we find a first arc
        // that's before our target label:
        fst.readFirstTargetArc(getArc(upto-1), arc, fstReader);
        if (arc.label() < targetLabel) {
          // Then, scan forwards to the arc just before
          // the targetLabel:
          while(!arc.isLast() && fst.readNextArcLabel(arc, fstReader) < targetLabel) {
            fst.readNextArc(arc, fstReader);
          }
          pushLast();
          return null;
        }
        upto--;
        if (upto == 0) {
          return null;
        }
        targetLabel = getTargetLabel();
        arc = getArc(upto);
      }
    } else if (!arc.isLast()) {
      //System.out.println("  check next label=" + fst.readNextArcLabel(arc) + " (" + (char) fst.readNextArcLabel(arc) + ")");
      if (fst.readNextArcLabel(arc, fstReader) > targetLabel) {
        pushLast();
        return null;
      } else {
        // keep scanning
        return fst.readNextArc(arc, fstReader);
      }
    } else {
      pushLast();
      return null;
    }
  }

  /** Seeks to exactly target term. */
  boolean doSeekExact() throws IOException {

    // TODO: possibly caller could/should provide common
    // prefix length?  ie this work may be redundant if
    // caller is in fact intersecting against its own
    // automaton

    //System.out.println("FE: seek exact upto=" + upto);

    // Save time by starting at the end of the shared prefix
    // b/w our current term & the target:
    rewindPrefix();

    //System.out.println("FE: after rewind upto=" + upto);
    FST.Arc<T> arc = getArc(upto-1);
    int targetLabel = getTargetLabel();

    final FST.BytesReader fstReader = fst.getBytesReader();

    while(true) {
      //System.out.println("  cycle target=" + (targetLabel == -1 ? "-1" : (char) targetLabel));
      final FST.Arc<T> nextArc = fst.findTargetArc(targetLabel, arc, getArc(upto), fstReader);
      if (nextArc == null) {
        // short circuit
        //upto--;
        //upto = 0;
        fst.readFirstTargetArc(arc, getArc(upto), fstReader);
        //System.out.println("  no match upto=" + upto);
        return false;
      }
      // Match -- recurse:
      output[upto] = fst.outputs.add(output[upto-1], nextArc.output());
      if (targetLabel == FST.END_LABEL) {
        //System.out.println("  return found; upto=" + upto + " output=" + output[upto] + " nextArc=" + nextArc.isLast());
        return true;
      }
      setCurrentLabel(targetLabel);
      incr();
      targetLabel = getTargetLabel();
      arc = nextArc;
    }
  }

  private void incr() {
    upto++;
    grow();
    if (arcs.length <= upto) {
      @SuppressWarnings({"rawtypes","unchecked"}) final FST.Arc<T>[] newArcs =
        new FST.Arc[ArrayUtil.oversize(1+upto, RamUsageEstimator.NUM_BYTES_OBJECT_REF)];
      System.arraycopy(arcs, 0, newArcs, 0, arcs.length);
      arcs = newArcs;
    }
    if (output.length <= upto) {
      @SuppressWarnings({"rawtypes","unchecked"}) final T[] newOutput =
        (T[]) new Object[ArrayUtil.oversize(1+upto, RamUsageEstimator.NUM_BYTES_OBJECT_REF)];
      System.arraycopy(output, 0, newOutput, 0, output.length);
      output = newOutput;
    }
  }

  // Appends current arc, and then recurses from its target,
  // appending first arc all the way to the final node
  private void pushFirst() throws IOException {

    FST.Arc<T> arc = arcs[upto];
    assert arc != null;

    while (true) {
      output[upto] = fst.outputs.add(output[upto-1], arc.output());
      if (arc.label() == FST.END_LABEL) {
        // Final node
        break;
      }
      //System.out.println("  pushFirst label=" + (char) arc.label + " upto=" + upto + " output=" + fst.outputs.outputToString(output[upto]));
      setCurrentLabel(arc.label());
      incr();
      
      final FST.Arc<T> nextArc = getArc(upto);
      fst.readFirstTargetArc(arc, nextArc, fstReader);
      arc = nextArc;
    }
  }

  // Recurses from current arc, appending last arc all the
  // way to the first final node
  private void pushLast() throws IOException {

    FST.Arc<T> arc = arcs[upto];
    assert arc != null;

    while (true) {
      setCurrentLabel(arc.label());
      output[upto] = fst.outputs.add(output[upto-1], arc.output());
      if (arc.label() == FST.END_LABEL) {
        // Final node
        break;
      }
      incr();

      arc = fst.readLastTargetArc(arc, getArc(upto), fstReader);
    }
  }

  private FST.Arc<T> getArc(int idx) {
    if (arcs[idx] == null) {
      arcs[idx] = new FST.Arc<>();
    }
    return arcs[idx];
  }

}